Answer :

Let's solve each part of the question step by step.

### Part (i): Expressing [tex]\(\sqrt{27}\)[/tex] in exponential form

The square root of a number can be represented in exponential form using the exponent [tex]\( \frac{1}{2} \)[/tex]. Thus,

[tex]\[ \sqrt{27} = 27^{\frac{1}{2}} \][/tex]

The approximate value of this expression is:

[tex]\[ 27^{\frac{1}{2}} \approx 5.196 \][/tex]

### Part (ii): Expressing [tex]\(\sqrt[4]{156}\)[/tex] in exponential form

The fourth root of a number can be represented in exponential form using the exponent [tex]\( \frac{1}{4} \)[/tex]. Thus,

[tex]\[ \sqrt[4]{156} = 156^{\frac{1}{4}} \][/tex]

The approximate value of this expression is:

[tex]\[ 156^{\frac{1}{4}} \approx 3.534 \][/tex]

### Summary

1. [tex]\(\sqrt{27} = 27^{\frac{1}{2}} \approx 5.196\)[/tex]
2. [tex]\(\sqrt[4]{156} = 156^{\frac{1}{4}} \approx 3.534\)[/tex]

By expressing the square root and fourth root in exponential form and approximating their values, we obtain:

[tex]\[ 27^{\frac{1}{2}} \approx 5.196 \][/tex]
[tex]\[ 156^{\frac{1}{4}} \approx 3.534 \][/tex]

These are the exponential forms and their corresponding approximate numerical values.