Solve for [tex]\( x \)[/tex] in the given systems of equations:

(i)
[tex]\[
\begin{array}{l}
3x + 2y = 6 \\
2x - 3y = 17
\end{array}
\][/tex]

(iv)
[tex]\[
\begin{array}{l}
\frac{x}{2} + \frac{y}{3} = 8 \\
\frac{5x}{4} - 3y = -3
\end{array}
\][/tex]

(vi)
[tex]\[
\frac{x + y}{2} + \frac{3x - 5y}{4} = 2
\][/tex]



Answer :

Let's solve the given systems of linear equations step by step:

System (i):
[tex]\[ \begin{cases} 3x + 2y = 6, \\ 2x - 3y = 17 \end{cases} \][/tex]

To solve this system, we use the method of elimination or substitution. By solving, we find:

- From the first equation: [tex]\(3x + 2y = 6\)[/tex]
- From the second equation: [tex]\(2x - 3y = 17\)[/tex]

After solving these simultaneously, we get:

[tex]\[ x = 4, \quad y = -3 \][/tex]

System (iv):
[tex]\[ \begin{cases} \frac{x}{2} + \frac{y}{3} = 8, \\ \frac{5x}{4} - 3y = -3 \end{cases} \][/tex]

To solve this system, we first clear the fractions:

- Multiply the first equation by 6 to clear denominators:
[tex]\[ 3x + 2y = 48 \][/tex]

- Multiply the second equation by 4 to clear denominators:
[tex]\[ 5x - 12y = -12 \][/tex]

After solving these simultaneously, we find:

[tex]\[ x = 12, \quad y = 6 \][/tex]

Equation (vi):
[tex]\[ \frac{x + y}{2} + \frac{3x - 5y}{4} = 2 \][/tex]

Solve this by eliminating the fractions. Multiply through by the least common multiple of the denominators (4):

[tex]\[ 2(x + y) + (3x - 5y) = 8 \][/tex]

Simplify and combine like terms:

[tex]\[ 2x + 2y + 3x - 5y = 8 \\ 5x - 3y = 8 \][/tex]

Let’s solve for [tex]\(x\)[/tex] in terms of [tex]\(y\)[/tex]:
[tex]\[ x = \frac{3y + 8}{5} \][/tex]

So the solution for equation (vi) is a parametric form:

[tex]\[ x = \frac{3y}{5} + \frac{8}{5} \][/tex]

Thus, the solutions are:
- System (i): [tex]\((x, y) = (4, -3)\)[/tex]
- System (iv): [tex]\((x, y) = (12, 6)\)[/tex]
- Equation (vi): [tex]\((x, y) = \left(\frac{3y}{5} + \frac{8}{5}, y\right)\)[/tex]

These are the detailed solutions for the given equations and systems.