Simplify and solve the following expression:

[tex]\[ (-21) \times [(-4) + (-6)] = [(-21) \times (-4)] + [(-21) \times (-6)] \][/tex]

For any integer [tex]\( a \)[/tex], what is [tex]\( (-1) \times a \)[/tex] equal to?



Answer :

For any integer [tex]\( a \)[/tex], [tex]\(-1 \times a \)[/tex] is equal to [tex]\(-a\)[/tex].

Here's a detailed, step-by-step explanation:

1. Understanding the multiplication by [tex]\(-1\)[/tex]:
- When you multiply any number by [tex]\(-1\)[/tex], the result is the negation of that number.
- The negation of a number changes its sign. If the number is positive, it becomes negative, and if it is negative, it becomes positive.

2. Examples for clarity:
- If [tex]\( a \)[/tex] is a positive integer, for example, [tex]\( a = 5 \)[/tex]:
[tex]\[ -1 \times 5 = -5 \][/tex]
In this case, [tex]\( -5 \)[/tex] is the negation of [tex]\( 5 \)[/tex].

- If [tex]\( a \)[/tex] is a negative integer, for example, [tex]\( a = -7 \)[/tex]:
[tex]\[ -1 \times (-7) = 7 \][/tex]
In this case, [tex]\( 7 \)[/tex] is the negation of [tex]\( -7 \)[/tex].

3. General case:
- For any integer [tex]\( a \)[/tex], multiplying [tex]\( a \)[/tex] by [tex]\(-1\)[/tex] results in:
[tex]\[ -1 \times a = -a \][/tex]
- This holds true regardless of whether [tex]\( a \)[/tex] is positive, negative, or zero.

So, summarizing the result:
[tex]\[ \boxed{-1 \times a = -a} \][/tex]