(1) Given:

- Mass [tex]$= 6 \text{ kg}$[/tex]
- Force [tex]$= 12 \text{ N}$[/tex]

Required:

- Acceleration

Equation:

[tex]\[ A = \frac{\text{Force}}{\text{Mass}} \][/tex]

Solution:

[tex]\[ A = \frac{12 \text{ N}}{6 \text{ kg}} \][/tex]

Answer:

[tex]\[ A = 2 \text{ m/s}^2 \][/tex]



Answer :

Certainly! Let's work through the problem step-by-step to find the required acceleration.

Problem:
Given a mass of [tex]\( 6 \ \text{kg} \)[/tex] and a force of [tex]\( 12 \ \text{N} \)[/tex], calculate the acceleration.

Solution:

1. Identify the given values:
- Mass [tex]\( m = 6 \ \text{kg} \)[/tex]
- Force [tex]\( F = 12 \ \text{N} \)[/tex]

2. Recall the formula for acceleration:
Acceleration [tex]\( A \)[/tex] is determined by the formula:
[tex]\[ A = \frac{F}{m} \][/tex]

3. Substitute the given values into the formula:
Substitute [tex]\( F = 12 \ \text{N} \)[/tex] and [tex]\( m = 6 \ \text{kg} \)[/tex] into the formula:
[tex]\[ A = \frac{12 \ \text{N}}{6 \ \text{kg}} \][/tex]

4. Perform the division:
Calculate the value of [tex]\( A \)[/tex]:
[tex]\[ A = \frac{12}{6} = 2 \ m/s^2 \][/tex]

Answer:
The acceleration [tex]\( A \)[/tex] is [tex]\( 2 \ m/s^2 \)[/tex].

This means that the object with a mass of [tex]\( 6 \ \text{kg} \)[/tex], when acted upon by a force of [tex]\( 12 \ \text{N} \)[/tex], will accelerate at [tex]\( 2 \ m/s^2 \)[/tex].