Answer :

Answer:

[tex]\dfrac{17}{3}[/tex]

Step-by-step explanation:

Solving the Problem

We're told

  • x = 3
  • y = 2/5
  • z = 3/5

and we need to find the value of the expression (x+y)/z.

So, we plug and evaluate.

                                            [tex]\dfrac{x+y}{z} =\dfrac{3+\frac{2}{5} }{\frac{3}{5} }[/tex]

Let's simplify the numerator. To simplify the sum of a whole number and a fraction, rewrite the whole number in fraction form where its denominator matches the fraction it's being added to.

                                      [tex]3 + \dfrac{2}{5}= \dfrac{15}{5}+\dfrac{2}{5}=\dfrac{17}{5}[/tex]

So,

                                            [tex]\dfrac{3+\frac{2}{5} }{\frac{3}{5} }=\dfrac{\frac{17}{5} }{\frac{3}{5} }[/tex].

To divide a fraction by a fraction we use KCF (keep-change-flip) where we take the numerator as is (keep), use a multiplication sign (change), and take the reciprocal of the denominator (flip).

                                      [tex]\dfrac{\frac{17}{5} }{\frac{3}{5} } = \dfrac{17}{5} \times \dfrac{5}{3}=\boxed{\dfrac{17}{3}}[/tex]

The 5's in the numerator and denominator cancel, leaving us with 17 over 3 as our answer.