Answer :

To solve the expression [tex]\(\frac{\sin 2A}{1 + \cos 2A} = \tan A\)[/tex], let's go through it step-by-step.

1. Recall the trigonometric identities:

We know the following trigonometric identities:
[tex]\[ \sin 2A = 2 \sin A \cos A \][/tex]
and
[tex]\[ \cos 2A = 2 \cos^2 A - 1 \][/tex]
or alternatively,
[tex]\[ \cos 2A = 1 - 2 \sin^2 A \][/tex]

2. Substitute [tex]\(\sin 2A\)[/tex]:

Substitute [tex]\(\sin 2A = 2 \sin A \cos A\)[/tex] into the numerator of the given expression.
[tex]\[ \frac{\sin 2A}{1 + \cos 2A} = \frac{2 \sin A \cos A}{1 + \cos 2A} \][/tex]

3. Simplify the denominator:

Substitute the identity [tex]\(\cos 2A = 1 - 2 \sin^2 A\)[/tex] into the denominator.
[tex]\[ 1 + \cos 2A = 1 + (1 - 2 \sin^2 A) = 2 - 2 \sin^2 A \][/tex]

4. Simplify the expression:

Now the expression becomes:
[tex]\[ \frac{2 \sin A \cos A}{2(1 - \sin^2 A)} = \frac{2 \sin A \cos A}{2 \cos^2 A} \][/tex]

5. Reduce the fraction:

Cancel out the common factors in the numerator and the denominator.
[tex]\[ \frac{2 \sin A \cos A}{2 \cos^2 A} = \frac{\sin A}{\cos A} \][/tex]

6. Final simplification:

We know that [tex]\(\frac{\sin A}{\cos A} = \tan A\)[/tex]. Thus,
[tex]\[ \frac{\sin 2A}{1 + \cos 2A} = \tan A \][/tex]

So we have shown that [tex]\(\frac{\sin 2A}{1 + \cos 2A} = \tan A\)[/tex].