Answer :
To solve the problem, we will find the sum of [tex]\(\frac{3}{4}\)[/tex] and [tex]\(\frac{1}{2}\)[/tex], and then subtract [tex]\(\frac{1}{4}\)[/tex] from that sum.
1. Step 1: Finding the sum of [tex]\(\frac{3}{4}\)[/tex] and [tex]\(\frac{1}{2}\)[/tex]
We need to add the fractions [tex]\(\frac{3}{4}\)[/tex] and [tex]\(\frac{1}{2}\)[/tex].
First, we need a common denominator. The denominator for these fractions is 4:
[tex]\[ \frac{1}{2} = \frac{2}{4} \][/tex]
Now add the fractions:
[tex]\[ \frac{3}{4} + \frac{2}{4} = \frac{3 + 2}{4} = \frac{5}{4} \][/tex]
So, the sum [tex]\(\frac{3}{4} + \frac{1}{2}\)[/tex] is [tex]\(\frac{5}{4}\)[/tex] or 1.25.
2. Step 2: Subtracting [tex]\(\frac{1}{4}\)[/tex] from [tex]\(\frac{5}{4}\)[/tex]
We now need to subtract [tex]\(\frac{1}{4}\)[/tex] from [tex]\(\frac{5}{4}\)[/tex]:
[tex]\[ \frac{5}{4} - \frac{1}{4} = \frac{5 - 1}{4} = \frac{4}{4} = 1 \][/tex]
So, the difference is 1.
Therefore, the difference of the sum of [tex]\(\frac{3}{4}\)[/tex] and [tex]\(\frac{1}{2}\)[/tex] minus [tex]\(\frac{1}{4}\)[/tex] is 1. The correct answer is:
A. 1
1. Step 1: Finding the sum of [tex]\(\frac{3}{4}\)[/tex] and [tex]\(\frac{1}{2}\)[/tex]
We need to add the fractions [tex]\(\frac{3}{4}\)[/tex] and [tex]\(\frac{1}{2}\)[/tex].
First, we need a common denominator. The denominator for these fractions is 4:
[tex]\[ \frac{1}{2} = \frac{2}{4} \][/tex]
Now add the fractions:
[tex]\[ \frac{3}{4} + \frac{2}{4} = \frac{3 + 2}{4} = \frac{5}{4} \][/tex]
So, the sum [tex]\(\frac{3}{4} + \frac{1}{2}\)[/tex] is [tex]\(\frac{5}{4}\)[/tex] or 1.25.
2. Step 2: Subtracting [tex]\(\frac{1}{4}\)[/tex] from [tex]\(\frac{5}{4}\)[/tex]
We now need to subtract [tex]\(\frac{1}{4}\)[/tex] from [tex]\(\frac{5}{4}\)[/tex]:
[tex]\[ \frac{5}{4} - \frac{1}{4} = \frac{5 - 1}{4} = \frac{4}{4} = 1 \][/tex]
So, the difference is 1.
Therefore, the difference of the sum of [tex]\(\frac{3}{4}\)[/tex] and [tex]\(\frac{1}{2}\)[/tex] minus [tex]\(\frac{1}{4}\)[/tex] is 1. The correct answer is:
A. 1