Answer :
Certainly! Let's solve the problem step-by-step:
1. Convert Mixed Numbers to Improper Fractions:
- Haven bought [tex]\(6\frac{2}{3}\)[/tex] meters of cloth.
- Haven used [tex]\(4\frac{3}{5}\)[/tex] meters of cloth.
To work with these amounts, we first convert them to improper fractions.
For [tex]\(6\frac{2}{3}\)[/tex]:
- The whole number part is 6.
- The fractional part is [tex]\(\frac{2}{3}\)[/tex].
- Convert [tex]\(6\frac{2}{3}\)[/tex] to an improper fraction:
[tex]\[ 6\frac{2}{3} = 6 + \frac{2}{3} = \frac{18}{3} + \frac{2}{3} = \frac{18 + 2}{3} = \frac{20}{3} \][/tex]
For [tex]\(4\frac{3}{5}\)[/tex]:
- The whole number part is 4.
- The fractional part is [tex]\(\frac{3}{5}\)[/tex].
- Convert [tex]\(4\frac{3}{5}\)[/tex] to an improper fraction:
[tex]\[ 4\frac{3}{5} = 4 + \frac{3}{5} = \frac{20}{5} + \frac{3}{5} = \frac{20 + 3}{5} = \frac{23}{5} \][/tex]
2. Calculate Remaining Cloth:
- Subtract the amount of cloth used from the amount of cloth bought.
[tex]\[ \text{Remaining cloth} = \frac{20}{3} - \frac{23}{5} \][/tex]
To subtract these, find a common denominator:
- The least common multiple (LCM) of 3 and 5 is 15.
- Convert each fraction to have the denominator of 15.
[tex]\[ \frac{20}{3} = \frac{20 \times 5}{3 \times 5} = \frac{100}{15} \][/tex]
[tex]\[ \frac{23}{5} = \frac{23 \times 3}{5 \times 3} = \frac{69}{15} \][/tex]
Now subtract the fractions:
[tex]\[ \frac{100}{15} - \frac{69}{15} = \frac{100 - 69}{15} = \frac{31}{15} \][/tex]
3. Convert the Remaining Cloth Back to a Mixed Number:
- [tex]\(\frac{31}{15}\)[/tex] can be converted to a mixed number.
- Divide 31 by 15.
[tex]\[ 31 \div 15 = 2 \text{ remainder } 1 \][/tex]
- So, [tex]\(\frac{31}{15}\)[/tex] is equivalent to:
[tex]\[ 2 \frac{1}{15} \][/tex]
4. Match to the Given Choices:
- The remaining cloth is [tex]\(2 \frac{1}{15}\)[/tex] meters.
- The correct choice is [tex]\(C: 2 \frac{1}{15} \text{ m}\)[/tex].
In conclusion, the remaining cloth is [tex]\(2 \frac{1}{15}\)[/tex] meters, which corresponds to option [tex]\(C: 2 \frac{1}{15} \text{ m}\)[/tex].
1. Convert Mixed Numbers to Improper Fractions:
- Haven bought [tex]\(6\frac{2}{3}\)[/tex] meters of cloth.
- Haven used [tex]\(4\frac{3}{5}\)[/tex] meters of cloth.
To work with these amounts, we first convert them to improper fractions.
For [tex]\(6\frac{2}{3}\)[/tex]:
- The whole number part is 6.
- The fractional part is [tex]\(\frac{2}{3}\)[/tex].
- Convert [tex]\(6\frac{2}{3}\)[/tex] to an improper fraction:
[tex]\[ 6\frac{2}{3} = 6 + \frac{2}{3} = \frac{18}{3} + \frac{2}{3} = \frac{18 + 2}{3} = \frac{20}{3} \][/tex]
For [tex]\(4\frac{3}{5}\)[/tex]:
- The whole number part is 4.
- The fractional part is [tex]\(\frac{3}{5}\)[/tex].
- Convert [tex]\(4\frac{3}{5}\)[/tex] to an improper fraction:
[tex]\[ 4\frac{3}{5} = 4 + \frac{3}{5} = \frac{20}{5} + \frac{3}{5} = \frac{20 + 3}{5} = \frac{23}{5} \][/tex]
2. Calculate Remaining Cloth:
- Subtract the amount of cloth used from the amount of cloth bought.
[tex]\[ \text{Remaining cloth} = \frac{20}{3} - \frac{23}{5} \][/tex]
To subtract these, find a common denominator:
- The least common multiple (LCM) of 3 and 5 is 15.
- Convert each fraction to have the denominator of 15.
[tex]\[ \frac{20}{3} = \frac{20 \times 5}{3 \times 5} = \frac{100}{15} \][/tex]
[tex]\[ \frac{23}{5} = \frac{23 \times 3}{5 \times 3} = \frac{69}{15} \][/tex]
Now subtract the fractions:
[tex]\[ \frac{100}{15} - \frac{69}{15} = \frac{100 - 69}{15} = \frac{31}{15} \][/tex]
3. Convert the Remaining Cloth Back to a Mixed Number:
- [tex]\(\frac{31}{15}\)[/tex] can be converted to a mixed number.
- Divide 31 by 15.
[tex]\[ 31 \div 15 = 2 \text{ remainder } 1 \][/tex]
- So, [tex]\(\frac{31}{15}\)[/tex] is equivalent to:
[tex]\[ 2 \frac{1}{15} \][/tex]
4. Match to the Given Choices:
- The remaining cloth is [tex]\(2 \frac{1}{15}\)[/tex] meters.
- The correct choice is [tex]\(C: 2 \frac{1}{15} \text{ m}\)[/tex].
In conclusion, the remaining cloth is [tex]\(2 \frac{1}{15}\)[/tex] meters, which corresponds to option [tex]\(C: 2 \frac{1}{15} \text{ m}\)[/tex].