Simplify the following expression:

[tex]\[
\frac{\left(6a^a\right)^8 \times 6a^5 \times \left(a^a\right)^{-4}}{\left(a^9\right)^3}
\][/tex]



Answer :

Sure, let's simplify the given expression step-by-step:

We are given the expression:

[tex]$\frac{\left(6 a^a\right)^8 \times 6 a^5 \times \left(a^a\right)^{-4}}{\left(a^9\right)^3}$[/tex]

First, let's simplify each part separately.

1. Simplify [tex]\(\left(6 a^a\right)^8\)[/tex]:
[tex]\[ \left(6 a^a\right)^8 = 6^8 \cdot \left(a^a\right)^8 \][/tex]

2. Simplify [tex]\(6 a^5\)[/tex]:
[tex]\[ 6 a^5 \][/tex]

3. Simplify [tex]\(\left(a^a\right)^{-4}\)[/tex]:
[tex]\[ \left(a^a\right)^{-4} = \frac{1}{\left(a^a\right)^4} \][/tex]

4. Simplify [tex]\(\left(a^9\right)^3\)[/tex]:
[tex]\[ \left(a^9\right)^3 = a^{27} \][/tex]

Combine the simplified parts in the numerator and denominator:

Numerator:
[tex]\[ 6^8 \cdot \left(a^a\right)^8 \cdot 6 \cdot a^5 \cdot \frac{1}{\left(a^a\right)^4} = 6^8 \cdot 6 \cdot a^5 \cdot \frac{\left(a^a\right)^8}{\left(a^a\right)^4} \][/tex]
Simplify within the numerator:
[tex]\[ 6^8 \cdot 6 \cdot a^5 \cdot \left(a^a\right)^{8-4} = 6^9 \cdot a^5 \cdot a^a^4 \][/tex]

Denominator:
[tex]\[ a^{27} \][/tex]

Now we can combine the numerator and the denominator:

[tex]\[ \frac{6^9 \cdot a^5 \cdot a^a^4}{a^{27}} \][/tex]

Next, simplify the fraction by combining the [tex]\(a\)[/tex] terms:

[tex]\[ 6^9 \cdot \frac{a^5 \cdot a^{4a}}{a^{27}} = 6^9 \cdot a^{5 + 4a - 27} = 6^9 \cdot a^{4a - 22} \][/tex]

Now simply evaluate [tex]\(6^9\)[/tex]:

[tex]\[ 6^9 = 10077696 \][/tex]

Therefore, the simplified expression is:

[tex]\[ 10077696 \cdot a^{4a - 22} \][/tex]

So, the final result is:

[tex]\[ \boxed{10077696 \cdot a^{4a - 22}} \][/tex]