4. If [tex]$A =\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$[/tex] and [tex]$B =\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$[/tex], prove that:

a) [tex][tex]$A^T = A$[/tex][/tex]

b) [tex]$B^T = B$[/tex]

c) Write your findings in a sentence.



Answer :

Let's approach this problem step-by-step.

Step 1: Understanding the Problem

We need to show that two given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are equal to their transposes. Mathematically, this means proving that:
1. [tex]\(A^T = A\)[/tex]
2. [tex]\(B^T = B\)[/tex]

Matrices that are equal to their own transposes are called "symmetric."

Step 2: Write Down the Matrices

The given matrices are:
[tex]\[ A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]

[tex]\[ B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]

Step 3: Calculate the Transpose of Matrix [tex]\(A\)[/tex]

The transpose of a matrix is found by swapping its rows with its columns.

For matrix [tex]\(A\)[/tex]:
- The first row [tex]\((1, 0)\)[/tex] becomes the first column:
[tex]\[ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \][/tex]

- The second row [tex]\((0, 1)\)[/tex] becomes the second column:
[tex]\[ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \][/tex]

Thus, the transpose of [tex]\(A\)[/tex] (denoted as [tex]\(A^T\)[/tex]) is:
[tex]\[ A^T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]

Comparing [tex]\(A^T\)[/tex] with [tex]\(A\)[/tex], we see that [tex]\(A^T = A\)[/tex].

Step 4: Calculate the Transpose of Matrix [tex]\(B\)[/tex]

Similarly, for matrix [tex]\(B\)[/tex]:
- The first row [tex]\((1, 0, 0)\)[/tex] becomes the first column:
[tex]\[ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \][/tex]

- The second row [tex]\((0, 1, 0)\)[/tex] becomes the second column:
[tex]\[ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \][/tex]

- The third row [tex]\((0, 0, 1)\)[/tex] becomes the third column:
[tex]\[ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \][/tex]

Thus, the transpose of [tex]\(B\)[/tex] (denoted as [tex]\(B^T\)[/tex]) is:
[tex]\[ B^T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]

Comparing [tex]\(B^T\)[/tex] with [tex]\(B\)[/tex], we see that [tex]\(B^T = B\)[/tex].

Step 5: Summarize Your Findings

We have proven that:
a) [tex]\(A^T = A\)[/tex]
b) [tex]\(B^T = B\)[/tex]

This means that both matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are symmetric.

In a sentence: Both the given matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are symmetric, as they are equal to their respective transposes.