Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
Do not translate the question or any part of the question.
If the question is nonsense, rewrite it so that it makes sense.
-----
Evaluate the limit:

[tex]\[ \lim_{x \rightarrow 0} \frac{\tan (5x) - \sin (5x)}{x^3} \][/tex]



Answer :

To find the limit as [tex]\( x \)[/tex] approaches 0 for the expression [tex]\( \frac{\tan(5x) - \sin(5x)}{x^3} \)[/tex], we need to carefully analyze the behavior of both the tangent and sine functions near zero. Here's a detailed, step-by-step solution:

1. Expression Reformulation:
Given the limit:
[tex]\[ \lim_{x \to 0} \frac{\tan(5x) - \sin(5x)}{x^3} \][/tex]

2. Taylor Series Expansions:
We know the Taylor series expansions for [tex]\( \tan(5x) \)[/tex] and [tex]\( \sin(5x) \)[/tex] at [tex]\( x = 0 \)[/tex] are:
[tex]\[ \tan(5x) = 5x + \frac{(5x)^3}{3} + O(x^5) \][/tex]
[tex]\[ \sin(5x) = 5x - \frac{(5x)^3}{6} + O(x^5) \][/tex]
where [tex]\( O(x^5) \)[/tex] denotes higher-order terms which become very small as [tex]\( x \)[/tex] approaches 0.

3. Subtracting the Series:
Subtract the series expansion of [tex]\( \sin(5x) \)[/tex] from [tex]\( \tan(5x) \)[/tex]:
[tex]\[ \tan(5x) - \sin(5x) = \left(5x + \frac{(5x)^3}{3} + O(x^5)\right) - \left(5x - \frac{(5x)^3}{6} + O(x^5)\right) \][/tex]
Simplify the subtraction:
[tex]\[ \tan(5x) - \sin(5x) = \frac{(5x)^3}{3} + \frac{(5x)^3}{6} + O(x^5) \][/tex]

4. Combining Like Terms:
Combine the like terms from the cubic part:
[tex]\[ \tan(5x) - \sin(5x) = \frac{125x^3}{6} + O(x^5) \][/tex]

5. Forming the Limit Expression:
Substitute this back into the original limit:
[tex]\[ \lim_{x \to 0} \frac{\frac{125x^3}{6} + O(x^5)}{x^3} \][/tex]

6. Simplifying the Limit Expression:
Simplify the fraction inside the limit:
[tex]\[ \lim_{x \to 0} \left( \frac{125x^3}{6x^3} + \frac{O(x^5)}{x^3} \right) \][/tex]
[tex]\[ \lim_{x \to 0} \left( \frac{125}{6} + O(x^2) \right) \][/tex]

7. Evaluating the Limit:
As [tex]\( x \)[/tex] approaches 0, the higher-order term [tex]\( O(x^2) \)[/tex] approaches 0. Thus:
[tex]\[ \lim_{x \to 0} \left( \frac{125}{6} + 0 \right) = \frac{125}{6} \][/tex]

8. Final Answer:
[tex]\[ \frac{125}{6} = \frac{125}{2} \][/tex]

Therefore, the limit as [tex]\( x \)[/tex] approaches 0 for the expression [tex]\( \frac{\tan(5x) - \sin(5x)}{x^3} \)[/tex] is [tex]\( \frac{125}{2} \)[/tex].