Uranium-235 undergoes a fission reaction and is fragmented into Barium-141 and Krypton-92. The rest masses of the reactant and products are:

[tex]\[
\begin{array}{ll}
U-235 = 390.2480 \times 10^{-27} \text{ Kg} & \text{Ba-141} = 233.9616 \times 10^{-27} \text{ Kg} \\
Kr-92 = 152.5794 \times 10^{-27} \text{ Kg} & \text{neutron} = 1.6747 \times 10^{-27} \text{ Kg}
\end{array}
\][/tex]

a) Write the equation of the nuclear fission reaction that took place. (2 marks)

b) Determine the mass defect. (2 marks)

c) Calculate the energy released by the reduction in mass in the reaction in MeV. (3 marks)



Answer :

Sure, let's go through each part of the question step-by-step.

### a) Write the equation of the nuclear fission reaction that took place. (2 marks)

The question states that Uranium-235 (U-235) undergoes fission and produces Barium-141 (Ba-141), Krypton-92 (Kr-92), and 2 neutrons. The equation of the nuclear fission reaction is:

[tex]\[ \text{U-235} \rightarrow \text{Ba-141} + \text{Kr-92} + 2 \text{neutrons} \][/tex]

### b) Determine the mass defect. (2 marks)

The mass defect ([tex]\(\Delta m\)[/tex]) is the difference between the mass of the reactants and the mass of the products. Here are the given masses in kg:

- Mass of Uranium-235, [tex]\( m_{\text{U-235}} = 390.2480 \times 10^{-27} \)[/tex] kg
- Mass of Barium-141, [tex]\( m_{\text{Ba-141}} = 233.9616 \times 10^{-27} \)[/tex] kg
- Mass of Krypton-92, [tex]\( m_{\text{Kr-92}} = 152.5794 \times 10^{-27} \)[/tex] kg
- Mass of a neutron, [tex]\( m_{\text{neutron}} = 1.6747 \times 10^{-27} \)[/tex] kg

The initial mass, which is the mass of U-235:
[tex]\[ m_{\text{initial}} = m_{\text{U-235}} = 390.2480 \times 10^{-27} \text{ kg} \][/tex]

The final mass, which includes the masses of Ba-141, Kr-92, and 2 neutrons:
[tex]\[ m_{\text{final}} = m_{\text{Ba-141}} + m_{\text{Kr-92}} + 2 \times m_{\text{neutron}} \][/tex]
[tex]\[ m_{\text{final}} = 233.9616 \times 10^{-27} \text{ kg} + 152.5794 \times 10^{-27} \text{ kg} + 2 \times 1.6747 \times 10^{-27} \text{ kg} \][/tex]
[tex]\[ m_{\text{final}} = 233.9616 \times 10^{-27} \text{ kg} + 152.5794 \times 10^{-27} \text{ kg} + 3.3494 \times 10^{-27} \text{ kg} \][/tex]
[tex]\[ m_{\text{final}} = 389.8904 \times 10^{-27} \text{ kg} \][/tex]

The mass defect is:
[tex]\[ \Delta m = m_{\text{initial}} - m_{\text{final}} \][/tex]
[tex]\[ \Delta m = 390.2480 \times 10^{-27} \text{ kg} - 389.8904 \times 10^{-27} \text{ kg} \][/tex]
[tex]\[ \Delta m = 3.575999999999832 \times 10^{-28} \text{ kg} \][/tex]

### c) Calculate the energy released by the reduction in mass in the reaction in MeV. (3 marks)

The energy released can be calculated using Einstein's mass-energy equivalence principle [tex]\( E = \Delta m \, c^2 \)[/tex], where [tex]\( c \)[/tex] is the speed of light ( [tex]\( c = 3 \times 10^8 \text{ m/s} \)[/tex]). Additionally, we need to convert the energy from joules to MeV. The conversion factor is [tex]\( 1 \text{ kg m}^2/\text{s}^2 = 5.60958884 \times 10^{26} \text{ MeV} \)[/tex].

First, calculate the energy in joules:
[tex]\[ E = \Delta m \, c^2 \][/tex]
[tex]\[ E = 3.575999999999832 \times 10^{-28} \text{ kg} \times (3 \times 10^8 \text{ m/s})^2 \][/tex]
[tex]\[ E = 3.575999999999832 \times 10^{-28} \times 9 \times 10^{16} \][/tex]
[tex]\[ E = 3.218399999999849 \times 10^{-11} \text{ J} \][/tex]

Convert joules to MeV:
[tex]\[ E (\text{MeV}) = 3.218399999999849 \times 10^{-11} \text{ J} \times 5.60958884 \times 10^{26} \text{ MeV/J} \][/tex]
[tex]\[ E (\text{MeV}) = 1.805390072265515 \times 10^{16} \text{ MeV} \][/tex]

Thus, the energy released in the fission reaction is [tex]\( 1.805390072265515 \times 10^{16} \text{ MeV} \)[/tex].