Select the correct answer.

Solve the equation using the method of completing the square.
[tex]\[ 2x^2 + 16x - 8 = 0 \][/tex]

A. [tex]\[ x = -2 \pm 4\sqrt{5} \][/tex]
B. [tex]\[ x = 2 \pm 4\sqrt{5} \][/tex]
C. [tex]\[ x = -4 \pm 2\sqrt{5} \][/tex]
D. [tex]\[ x = 4 \pm 2\sqrt{5} \][/tex]



Answer :

Certainly! Let's solve the quadratic equation [tex]\(2x^2 + 16x - 8 = 0\)[/tex] by completing the square.

### Step-by-Step Solution

1. Divide the entire equation by the coefficient of [tex]\(x^2\)[/tex] to simplify:

The given equation is:
[tex]\[ 2x^2 + 16x - 8 = 0 \][/tex]

Divide every term by 2:
[tex]\[ x^2 + 8x - 4 = 0 \][/tex]

2. Move the constant term to the right side of the equation:
[tex]\[ x^2 + 8x = 4 \][/tex]

3. Complete the square:

To complete the square on the left-hand side, take half of the coefficient of [tex]\(x\)[/tex] (which is 8), square it, and add it to both sides of the equation.
[tex]\[ \left(\frac{8}{2}\right)^2 = 16 \][/tex]

Add 16 to both sides:
[tex]\[ x^2 + 8x + 16 = 4 + 16 \][/tex]

This simplifies to:
[tex]\[ (x + 4)^2 = 20 \][/tex]

4. Take the square root of both sides:
[tex]\[ x + 4 = \pm \sqrt{20} \][/tex]

Simplify [tex]\(\sqrt{20}\)[/tex]:
[tex]\[ \sqrt{20} = \sqrt{4 \cdot 5} = 2\sqrt{5} \][/tex]

So:
[tex]\[ x + 4 = \pm 2\sqrt{5} \][/tex]

5. Solve for [tex]\(x\)[/tex]:
[tex]\[ x = -4 \pm 2\sqrt{5} \][/tex]

Therefore, the solutions to the equation [tex]\(2x^2 + 16x - 8 = 0\)[/tex] are:
[tex]\[ x = -4 + 2\sqrt{5} \quad \text{and} \quad x = -4 - 2\sqrt{5} \][/tex]

### Correct Answer:
The correct answer is:
C. [tex]\(x = -4 \pm 2 \sqrt{5}\)[/tex]