To calculate the volume of a sphere using the formula [tex]\( V = \frac{4}{3} \pi R^3 \)[/tex], follow these steps:
1. Write down the formula:
[tex]\[
V = \frac{4}{3} \pi R^3
\][/tex]
2. Substitute the values given:
- [tex]\(\pi = 3.14\)[/tex]
- [tex]\(R = 0.98\)[/tex]
[tex]\[
V = \frac{4}{3} \times 3.14 \times (0.98)^3
\][/tex]
3. Calculate [tex]\( (0.98)^3 \)[/tex]:
[tex]\[
(0.98)^3 = 0.98 \times 0.98 \times 0.98 = 0.941192
\][/tex]
4. Multiply this result by [tex]\(\pi\)[/tex]:
[tex]\[
3.14 \times 0.941192 = 2.95634128
\][/tex]
5. Multiply the result by [tex]\(\frac{4}{3}\)[/tex]:
[tex]\[
\frac{4}{3} \times 2.95634128 = 3.940457173333333
\][/tex]
6. Round the final result to a reasonable number of decimal places:
The volume [tex]\( V \)[/tex] is approximately [tex]\( 3.94 \)[/tex].
Thus, the volume of the sphere with radius 0.98 units is:
[tex]\[
V \approx 3.94 \, \text{cubic units}
\][/tex]