To find the volume [tex]\( V \)[/tex] of a sphere given by the formula [tex]\( V = \frac{4}{3} \pi R^3 \)[/tex] with [tex]\( R = 0.98 \)[/tex] and [tex]\( \pi = 3.14 \)[/tex], follow these steps:
1. Calculate [tex]\( R^3 \)[/tex]:
[tex]\[
R = 0.98
\][/tex]
[tex]\[
R^3 = (0.98)^3
\][/tex]
[tex]\[
R^3 = 0.98 \times 0.98 \times 0.98
\][/tex]
Based on the calculations:
[tex]\[
(0.98)^3 \approx 0.941192
\][/tex]
2. Multiply [tex]\( R^3 \)[/tex] by [tex]\( \pi \)[/tex]:
[tex]\[
\pi = 3.14
\][/tex]
[tex]\[
\pi \times R^3 = 3.14 \times 0.941192
\][/tex]
This gives:
[tex]\[
3.14 \times 0.941192 \approx 2.95534
\][/tex]
3. Multiply the result by [tex]\( \frac{4}{3} \)[/tex]:
[tex]\[
\frac{4}{3} = 1.33333
\][/tex]
Multiply this by the previous result:
[tex]\[
\frac{4}{3} \times 2.95534 \approx 1.33333 \times 2.95534
\][/tex]
[tex]\[
1.33333 \times 2.95534 \approx 3.94046
\][/tex]
Thus, the volume [tex]\( V \)[/tex] of the sphere is:
[tex]\[
V \approx 3.94046
\][/tex]
Therefore,
[tex]\[
V \approx 3.940457173333333
\][/tex]