Sure, let's match each quadratic equation with its correct solution set.
1. For the quadratic equation [tex]\( 2x^2 - 8x + 5 = 0 \)[/tex], the solution set is [tex]\( \frac{4 \pm \sqrt{6}}{2} \)[/tex].
2. For the quadratic equation [tex]\( 2x^2 - 10x - 3 = 0 \)[/tex], the solution set is [tex]\( \frac{9 \pm \sqrt{89}}{4} \)[/tex].
3. For the quadratic equation [tex]\( 2x^2 - 8x - 3 = 0 \)[/tex], the solution set is [tex]\( \frac{9 \pm \sqrt{33}}{4} \)[/tex].
4. For the quadratic equation [tex]\( 2x^2 - 9x - 1 = 0 \)[/tex], we don't have a matching solution, so it should be left out.
5. For the quadratic equation [tex]\( 2x^2 - 9x + 6 = 0 \)[/tex], the solution set is [tex]\( \frac{4 \pm \sqrt{22}}{2} \)[/tex].
Thus, the correct pairs are:
- [tex]\( 2x^2 - 8x + 5 = 0 \)[/tex] → [tex]\( \frac{4 \pm \sqrt{6}}{2} \)[/tex]
- [tex]\( 2x^2 - 10x - 3 = 0 \)[/tex] → [tex]\( \frac{9 \pm \sqrt{89}}{4} \)[/tex]
- [tex]\( 2x^2 - 8x - 3 = 0 \)[/tex] → [tex]\( \frac{9 \pm \sqrt{33}}{4} \)[/tex]
- [tex]\( 2x^2 - 9x + 6 = 0 \)[/tex] → [tex]\( \frac{4 \pm \sqrt{22}}{2} \)[/tex]
Ensure the above matching is reflected accurately in your final arrangement.