Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.

Match each quadratic equation with its solution set.

[tex]\[
\begin{array}{l}
1. \quad 2x^2 - 8x + 5 = 0 \\
2. \quad 2x^2 - 10x - 3 = 0 \\
3. \quad 2x^2 - 8x - 3 = 0 \\
4. \quad 2x^2 - 9x -1 = 0 \\
5. \quad 2x^2 - 9x + 6 = 0 \\
\end{array}
\][/tex]

[tex]\[
\begin{array}{l}
\frac{9 \pm \sqrt{33}}{4} \\
\frac{4 \pm \sqrt{6}}{2} \\
\frac{9 \pm \sqrt{89}}{4} \\
\frac{4 \pm \sqrt{22}}{2} \\
\end{array}
\][/tex]

1. \quad 2x^2 - 8x + 5 = 0 \quad \longrightarrow \quad \frac{4 \pm \sqrt{6}}{2}

2. \quad 2x^2 - 10x - 3 = 0 \quad \longrightarrow \quad \frac{9 \pm \sqrt{89}}{4}

3. \quad 2x^2 - 8x - 3 = 0 \quad \longrightarrow \quad \frac{4 \pm \sqrt{22}}{2}

4. \quad 2x^2 - 9x -1 = 0 \quad \longrightarrow \quad \frac{9 \pm \sqrt{33}}{4}



Answer :

Sure, let's match each quadratic equation with its correct solution set.

1. For the quadratic equation [tex]\( 2x^2 - 8x + 5 = 0 \)[/tex], the solution set is [tex]\( \frac{4 \pm \sqrt{6}}{2} \)[/tex].

2. For the quadratic equation [tex]\( 2x^2 - 10x - 3 = 0 \)[/tex], the solution set is [tex]\( \frac{9 \pm \sqrt{89}}{4} \)[/tex].

3. For the quadratic equation [tex]\( 2x^2 - 8x - 3 = 0 \)[/tex], the solution set is [tex]\( \frac{9 \pm \sqrt{33}}{4} \)[/tex].

4. For the quadratic equation [tex]\( 2x^2 - 9x - 1 = 0 \)[/tex], we don't have a matching solution, so it should be left out.

5. For the quadratic equation [tex]\( 2x^2 - 9x + 6 = 0 \)[/tex], the solution set is [tex]\( \frac{4 \pm \sqrt{22}}{2} \)[/tex].

Thus, the correct pairs are:

- [tex]\( 2x^2 - 8x + 5 = 0 \)[/tex] → [tex]\( \frac{4 \pm \sqrt{6}}{2} \)[/tex]
- [tex]\( 2x^2 - 10x - 3 = 0 \)[/tex] → [tex]\( \frac{9 \pm \sqrt{89}}{4} \)[/tex]
- [tex]\( 2x^2 - 8x - 3 = 0 \)[/tex] → [tex]\( \frac{9 \pm \sqrt{33}}{4} \)[/tex]
- [tex]\( 2x^2 - 9x + 6 = 0 \)[/tex] → [tex]\( \frac{4 \pm \sqrt{22}}{2} \)[/tex]

Ensure the above matching is reflected accurately in your final arrangement.