Answer :
Yes, let's solve the given expression step-by-step:
The expression is:
[tex]\[ 3\left(\frac{144}{12}\right) - \left[\frac{169}{13} - 6 \times 2\right] + 15 \times \frac{14}{2} \][/tex]
Step 1: Calculate [tex]\(\frac{144}{12}\)[/tex]:
[tex]\[ \frac{144}{12} = 12 \][/tex]
Step 2: Multiply the result by 3:
[tex]\[ 3 \times 12 = 36 \][/tex]
Step 3: Calculate [tex]\(\frac{169}{13}\)[/tex]:
[tex]\[ \frac{169}{13} = 13 \][/tex]
Step 4: Calculate [tex]\(6 \times 2\)[/tex]:
[tex]\[ 6 \times 2 = 12 \][/tex]
Step 5: Subtract the result of Step 4 from Step 3:
[tex]\[ 13 - 12 = 1 \][/tex]
Step 6: Calculate [tex]\(15 \times \frac{14}{2}\)[/tex]:
[tex]\[ 15 \times \frac{14}{2} = 15 \times 7 = 105 \][/tex]
Step 7: Combine the results from the previous steps:
[tex]\[ 36 - 1 + 105 \][/tex]
Step 8: Simplify the final expression:
[tex]\[ 36 - 1 = 35 \][/tex]
[tex]\[ 35 + 105 = 140 \][/tex]
Thus, the final result is:
[tex]\[ 140 \][/tex]
The expression is:
[tex]\[ 3\left(\frac{144}{12}\right) - \left[\frac{169}{13} - 6 \times 2\right] + 15 \times \frac{14}{2} \][/tex]
Step 1: Calculate [tex]\(\frac{144}{12}\)[/tex]:
[tex]\[ \frac{144}{12} = 12 \][/tex]
Step 2: Multiply the result by 3:
[tex]\[ 3 \times 12 = 36 \][/tex]
Step 3: Calculate [tex]\(\frac{169}{13}\)[/tex]:
[tex]\[ \frac{169}{13} = 13 \][/tex]
Step 4: Calculate [tex]\(6 \times 2\)[/tex]:
[tex]\[ 6 \times 2 = 12 \][/tex]
Step 5: Subtract the result of Step 4 from Step 3:
[tex]\[ 13 - 12 = 1 \][/tex]
Step 6: Calculate [tex]\(15 \times \frac{14}{2}\)[/tex]:
[tex]\[ 15 \times \frac{14}{2} = 15 \times 7 = 105 \][/tex]
Step 7: Combine the results from the previous steps:
[tex]\[ 36 - 1 + 105 \][/tex]
Step 8: Simplify the final expression:
[tex]\[ 36 - 1 = 35 \][/tex]
[tex]\[ 35 + 105 = 140 \][/tex]
Thus, the final result is:
[tex]\[ 140 \][/tex]