If [tex]$g(x)=\frac{x+1}{x-2}$[/tex] and [tex][tex]$h(x)=4-x$[/tex][/tex], what is the value of [tex]$(g \circ h)(-3)$[/tex]?

A. [tex]$\frac{8}{5}$[/tex]
B. [tex][tex]$\frac{5}{2}$[/tex][/tex]
C. [tex]$\frac{15}{2}$[/tex]
D. [tex]$\frac{18}{5}$[/tex]



Answer :

To find the value of [tex]\((g \circ h)(-3)\)[/tex], we need to follow these steps in a detailed manner:

1. Evaluate [tex]\(h(-3)\)[/tex]:
[tex]\[ h(x) = 4 - x \][/tex]
Substituting [tex]\(x = -3\)[/tex]:
[tex]\[ h(-3) = 4 - (-3) = 4 + 3 = 7 \][/tex]
So, [tex]\(h(-3) = 7\)[/tex].

2. Evaluate [tex]\(g(h(-3))\)[/tex] or [tex]\(g(7)\)[/tex]:
[tex]\[ g(x) = \frac{x + 1}{x - 2} \][/tex]
Substituting [tex]\(x = 7\)[/tex]:
[tex]\[ g(7) = \frac{7 + 1}{7 - 2} = \frac{8}{5} \][/tex]

3. Hence, the value of [tex]\((g \circ h)(-3)\)[/tex] is:
[tex]\[ (g \circ h)(-3) = g(h(-3)) = g(7) = \frac{8}{5} \][/tex]

So, the correct answer is [tex]\(\frac{8}{5}\)[/tex].