Solve for [tex]\( v \)[/tex].

[tex]\[
-10 \sqrt{v-10} = 60
\][/tex]

[tex]\[
-10 \sqrt{v-10} \cdot -\frac{1}{10} = 60 \cdot -\frac{1}{10}
\][/tex]

[tex]\[
\sqrt{v-10} = -6
\][/tex]

Since a square root cannot be a negative number, there is no real solution for [tex]\( v \)[/tex].



Answer :

Sure, let's solve the equation [tex]\(-10 \sqrt{v - 10} = 60\)[/tex] step-by-step.

1. Isolate the square root term:
First, divide both sides of the equation by [tex]\(-10\)[/tex] to isolate the square root.

[tex]\[ \frac{-10 \sqrt{v - 10}}{-10} = \frac{60}{-10} \][/tex]

Simplifying, we get:

[tex]\[ \sqrt{v - 10} = -6 \][/tex]

2. Remove the negative sign:
Multiply both sides by [tex]\(-1\)[/tex] to get rid of the negative sign.

[tex]\[ \sqrt{v - 10} = 6 \][/tex]

3. Square both sides:
To eliminate the square root, square both sides of the equation.

[tex]\[ (\sqrt{v - 10})^2 = 6^2 \][/tex]

This simplifies to:

[tex]\[ v - 10 = 36 \][/tex]

4. Solve for [tex]\(v\)[/tex]:
Finally, add [tex]\(10\)[/tex] to both sides of the equation to solve for [tex]\(v\)[/tex].

[tex]\[ v - 10 + 10 = 36 + 10 \][/tex]

Simplifying, we get:

[tex]\[ v = 46 \][/tex]

Therefore, the solution to the equation [tex]\(-10 \sqrt{v - 10} = 60\)[/tex] is [tex]\(v = 46\)[/tex].