Answer :
To find the value of [tex]\( h(-7) \)[/tex] for the function [tex]\( n(x) = 5.7 - 19x \)[/tex], we need to substitute [tex]\( x = -7 \)[/tex] into the function.
1. Start with the function:
[tex]\[ n(x) = 5.7 - 19x \][/tex]
2. Substitute [tex]\( x = -7 \)[/tex] into the function:
[tex]\[ n(-7) = 5.7 - 19(-7) \][/tex]
3. Evaluate the expression inside the parentheses:
[tex]\[ -19(-7) = 133 \][/tex]
4. Add the constant term:
[tex]\[ n(-7) = 5.7 + 133 \][/tex]
5. Calculate the final value:
[tex]\[ n(-7) = 138.7 \][/tex]
So, the correct answer is:
A. 138.7
1. Start with the function:
[tex]\[ n(x) = 5.7 - 19x \][/tex]
2. Substitute [tex]\( x = -7 \)[/tex] into the function:
[tex]\[ n(-7) = 5.7 - 19(-7) \][/tex]
3. Evaluate the expression inside the parentheses:
[tex]\[ -19(-7) = 133 \][/tex]
4. Add the constant term:
[tex]\[ n(-7) = 5.7 + 133 \][/tex]
5. Calculate the final value:
[tex]\[ n(-7) = 138.7 \][/tex]
So, the correct answer is:
A. 138.7