Select the correct answer.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
2.5 & 6.25 \\
\hline
9.4 & 88.36 \\
\hline
15.6 & 243.63 \\
\hline
19.5 & 380.25 \\
\hline
25.8 & 665.64 \\
\hline
\end{tabular}

The table lists the values for two parameters, [tex]$x$[/tex] and [tex]$y$[/tex], of an experiment. What is the approximate value of [tex]$y$[/tex] for [tex]$x=4$[/tex]?

A. 11

B. 16

C. 24

D. 43



Answer :

To estimate the value of [tex]\( y \)[/tex] for [tex]\( x = 4 \)[/tex] using the given data points, we will use interpolation. Interpolation is a method of estimating unknown values that fall between known values.

Given the data points:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 2.5 & 6.25 \\ \hline 9.4 & 88.36 \\ \hline 15.6 & 243.63 \\ \hline 19.5 & 380.25 \\ \hline 25.8 & 665.64 \\ \hline \end{array} \][/tex]

We need to find [tex]\( y \)[/tex] for [tex]\( x = 4 \)[/tex].

The values of [tex]\( x \)[/tex] given are 2.5 and 9.4, among others. Since 4 is between 2.5 and 9.4, we will look at these two points for interpolation:
[tex]\[ \begin{align*} x_1 &= 2.5, & y_1 &= 6.25 \\ x_2 &= 9.4, & y_2 &= 88.36 \end{align*} \][/tex]

Linear interpolation involves finding the linear function between these two points and then using it to estimate the value of [tex]\( y \)[/tex] for [tex]\( x = 4 \)[/tex].

The formula for linear interpolation is:
[tex]\[ y = y_1 + \frac{(y_2 - y_1)}{(x_2 - x_1)} \cdot (x - x_1) \][/tex]

Substitute the values:
[tex]\[ \begin{align*} y &= 6.25 + \frac{(88.36 - 6.25)}{(9.4 - 2.5)} \cdot (4 - 2.5) \\ &= 6.25 + \frac{(82.11)}{(6.9)} \cdot 1.5 \\ &= 6.25 + 11.903 \cdot 1.5 \\ &= 6.25 + 17.8545 \\ &= 24.1045 \end{align*} \][/tex]

So, the value of [tex]\( y \)[/tex] for [tex]\( x = 4 \)[/tex] is approximately [tex]\( 24 \)[/tex].

Hence, the correct answer is:
C. 24