Select the correct answer.

What is the slope of the line that goes through [tex]$(-5, -5)$[/tex] and [tex]$(5, -7)$[/tex]?

A. [tex]$-\frac{1}{5}$[/tex]
B. 0
C. [tex]$\frac{1}{5}$[/tex]
D. undefined



Answer :

To find the slope of the line that goes through the points [tex]\((-5, -5)\)[/tex] and [tex]\( (5, -7) \)[/tex], we use the slope formula:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Here, [tex]\((x_1, y_1)\)[/tex] are the coordinates of the first point, and [tex]\((x_2, y_2)\)[/tex] are the coordinates of the second point. Plugging in the given points, we have:

[tex]\[ (x_1, y_1) = (-5, -5) \\ (x_2, y_2) = (5, -7) \][/tex]

Now, substitute these values into the slope formula:

[tex]\[ m = \frac{-7 - (-5)}{5 - (-5)} \][/tex]

Simplify the numerator and the denominator:

[tex]\[ m = \frac{-7 + 5}{5 + 5} \][/tex]

[tex]\[ m = \frac{-2}{10} \][/tex]

Simplify [tex]\(\frac{-2}{10}\)[/tex]:

[tex]\[ m = -0.2 \][/tex]

Therefore, the slope of the line that goes through [tex]\((-5, -5)\)[/tex] and [tex]\( (5, -7) \)[/tex] is [tex]\( -0.2 \)[/tex].

Looking at the answer choices, the slope of [tex]\( -0.2 \)[/tex] corresponds to the fraction:

[tex]\[ -0.2 = -\frac{1}{5} \][/tex]

Thus, the correct answer is:
A. [tex]\(-\frac{1}{5}\)[/tex]