Let's say and write the answers as quickly as possible.

a) If [tex]$x^{\circ}, y^{\circ},$[/tex] and [tex]$z^{\circ}$[/tex] are the angles of a triangle, then [tex]$x^{\circ} + y^{\circ} + z^{\circ} = \qquad$[/tex]

b) If [tex]$x^{\circ}, 110^{\circ},$[/tex] and [tex]$40^{\circ}$[/tex] are the angles of a triangle, then [tex]$x^{\circ} = \qquad$[/tex]

c) If [tex]$x^{\circ}$[/tex] is the exterior angle and [tex]$y^{\circ}$[/tex] and [tex]$z^{\circ}$[/tex] are the two opposite interior angles of a triangle, then [tex]$x^{\circ} = \qquad$[/tex]



Answer :

Sure! Here are the answers:

a) If [tex]\( x^\circ \)[/tex], [tex]\( y^\circ \)[/tex], and [tex]\( z^\circ \)[/tex] are the angles of a triangle, then [tex]\[ x^\circ + y^\circ + z^\circ = 180^\circ \][/tex]

b) If [tex]\( x^\circ \)[/tex], [tex]\( 110^\circ \)[/tex], and [tex]\( 40^\circ \)[/tex] are the angles of a triangle, then [tex]\[ x^\circ = 30^\circ \][/tex]

c) If [tex]\( x^\circ \)[/tex] is the exterior angle and [tex]\( y^\circ \)[/tex] and [tex]\( z^\circ \)[/tex] are the two opposite interior angles of a triangle, then [tex]\[ x^\circ = 150^\circ \][/tex]

These are the required answers for each part.