Show that 332 is rational by writing it in the form [tex]$\frac{a}{b}$[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are integers.

Choose the correct answer below.

A. [tex]$\frac{47}{7}$[/tex]

B. [tex]$\frac{332}{1}$[/tex]

C. [tex]$\frac{7}{47}$[/tex]

D. [tex]$\frac{7}{83}$[/tex]

E. [tex]$\frac{83}{47}$[/tex]

F. [tex]$\frac{4}{7}$[/tex]

G. [tex]$\frac{83}{4}$[/tex]

H. [tex]$\frac{1}{332}$[/tex]

I. [tex]$\frac{4}{83}$[/tex]



Answer :

To show that 332 is a rational number, we need to express it in the form [tex]\(\frac{a}{b}\)[/tex], where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are integers and [tex]\(b\)[/tex] is not zero.

Any integer [tex]\(n\)[/tex] can be expressed as [tex]\(\frac{n}{1}\)[/tex]. This is because dividing any integer by 1 results in the integer itself, which satisfies the condition of a rational number.

For the given number 332:
[tex]\[ 332 = \frac{332}{1} \][/tex]

Here, [tex]\(a = 332\)[/tex] and [tex]\(b = 1\)[/tex]. Both are integers and [tex]\(b\)[/tex] is not zero. Thus, [tex]\(\frac{332}{1}\)[/tex] is a valid representation of 332 as a rational number.

Among the options given, the correct representation of 332 in the form [tex]\(\frac{a}{b}\)[/tex] is:
[tex]\[ \text{B. } \frac{332}{1} \][/tex]