Drag the terms to the correct locations in the expression. Not all terms will be used.

What is the complete factorization of [tex]$2x^2 - 11x - 21$[/tex]?

Terms:
- [tex]x[/tex]
- [tex]2x[/tex]
- [tex]3x[/tex]
- 1
- 3
- 7

Factorization:
[tex]( \quad \quad )( \quad \quad )[/tex]

Complete the factorization:
[tex]( \quad - \quad )( \quad + \quad )[/tex]



Answer :

Sure, let's factorize the quadratic expression step-by-step.

Given the quadratic expression: [tex]\( 2x^2 - 11x - 21 \)[/tex]

To factorize the quadratic expression, we look for two binomials of the form:

[tex]\[ (Ax + B)(Cx + D) \][/tex]

Multiplying these binomials, we get:

[tex]\[ (Ax + B)(Cx + D) = ACx^2 + (AD + BC)x + BD \][/tex]

We need this to match the form [tex]\( 2x^2 - 11x - 21 \)[/tex]. Therefore:

1. [tex]\( AC = 2 \)[/tex]
2. [tex]\( AD + BC = -11 \)[/tex]
3. [tex]\( BD = -21 \)[/tex]

Now, we choose [tex]\( A \)[/tex], [tex]\( B \)[/tex], [tex]\( C \)[/tex], and [tex]\( D \)[/tex] such that these conditions are satisfied.

Let's find the pairs of factors for [tex]\( AC \)[/tex] and [tex]\( BD \)[/tex]:

- Since [tex]\( AC = 2 \)[/tex], the possible pairs for [tex]\((A, C)\)[/tex] are [tex]\((1, 2)\)[/tex] or [tex]\((2, 1)\)[/tex].
- Since [tex]\( BD = -21 \)[/tex], the possible pairs for [tex]\((B, D)\)[/tex] are [tex]\((1, -21), (-1, 21), (3, -7), (-3, 7), (7, -3), (-7, 3)\)[/tex].

We need to select the correct pairs so that [tex]\( AD + BC = -11 \)[/tex].

After examining possible pairs, we find:

- When [tex]\( A = 1 \)[/tex], [tex]\( C = 2 \)[/tex], [tex]\( B = -7 \)[/tex], [tex]\( D = 3 \)[/tex]:
- [tex]\( AD + BC = (1)(3) + (-7)(2) = 3 - 14 = -11 \)[/tex]

So, the factorization is given by:

[tex]\[ 2x^2 - 11x - 21 = (x - 7)(2x + 3) \][/tex]

Therefore, the complete factorization is:

[tex]\[ (x - 7)(2x + 3) \][/tex]

So, the blank terms should be:

[tex]\[ (\quad x - 7 \quad ) ( \quad 2x + 3 \quad ) \][/tex]