If [tex]$y$[/tex] varies directly as [tex]$x$[/tex], and [tex]$y$[/tex] is 48 when [tex]$x$[/tex] is 6, which expression can be used to find the value of [tex]$y$[/tex] when [tex]$x$[/tex] is 2?

A. [tex]$y = \frac{48}{6}(2)$[/tex]
B. [tex]$y = \frac{6}{48}(2)$[/tex]
C. [tex]$y = \frac{(48)(6)}{2}$[/tex]
D. [tex]$y = \frac{2}{(48)(6)}$[/tex]



Answer :

Given the problem where [tex]\( y \)[/tex] varies directly as [tex]\( x \)[/tex], this relationship can be expressed as:

[tex]\[ y = kx \][/tex]

where [tex]\( k \)[/tex] is the constant of variation.

We are given that [tex]\( y = 48 \)[/tex] when [tex]\( x = 6 \)[/tex]. Using this information, we can determine the value of [tex]\( k \)[/tex]. Plugging the values into the direct variation formula:

[tex]\[ 48 = k \cdot 6 \][/tex]

To solve for [tex]\( k \)[/tex], divide both sides of the equation by 6:

[tex]\[ k = \frac{48}{6} \][/tex]

Now we know the constant of variation [tex]\( k \)[/tex], and we can use it to find the value of [tex]\( y \)[/tex] when [tex]\( x = 2 \)[/tex].

Substituting [tex]\( k \)[/tex] and [tex]\( x = 2 \)[/tex] back into the direct variation formula, we get:

[tex]\[ y = k \cdot 2 \][/tex]
[tex]\[ y = \left( \frac{48}{6} \right) \cdot 2 \][/tex]

Thus, the expression that can be used to find the value of [tex]\( y \)[/tex] when [tex]\( x = 2 \)[/tex] is:

[tex]\[ y = \frac{48}{6}(2) \][/tex]

The correct answer is:
[tex]\[ y = \frac{48}{6}(2) \][/tex]