For prescription drug coverage with her family health care plan, Emmeline has four options:

\begin{tabular}{|l|c|c|}
\hline
Plan & Monthly Premium & Prescription Co-pay \\
\hline
Option A & [tex]$\$[/tex]50[tex]$ & $[/tex]\[tex]$20$[/tex] \\
\hline
Option B & [tex]$\$[/tex]70[tex]$ & $[/tex]\[tex]$15$[/tex] \\
\hline
Option C & [tex]$\$[/tex]90[tex]$ & $[/tex]\[tex]$10$[/tex] \\
\hline
Option D & [tex]$\$[/tex]110[tex]$ & $[/tex]\[tex]$5$[/tex] \\
\hline
\end{tabular}

Based on Emmeline's records, her family fills an average of two prescriptions per month. Which would be her least expensive option?

A. Option A
B. Option B
C. Option C
D. Option D



Answer :

To determine which prescription drug coverage option is the least expensive for Emmeline, we need to consider both the monthly premium and the prescription co-pay for each option. Emmeline's family averages two prescriptions per month.

Here's the detailed step-by-step calculation for each option:

### Option A:
- Monthly Premium: \[tex]$50 - Prescription Co-pay: \$[/tex]20 per prescription

The total monthly cost for Option A can be calculated as:
[tex]\[ \text{Total Cost for Option A} = \text{Monthly Premium} + (\text{Prescription Co-pay} \times \text{Number of Prescriptions}) \][/tex]
[tex]\[ \text{Total Cost for Option A} = \$50 + (\$20 \times 2) \][/tex]
[tex]\[ \text{Total Cost for Option A} = \$50 + \$40 \][/tex]
[tex]\[ \text{Total Cost for Option A} = \$90 \][/tex]

### Option B:
- Monthly Premium: \[tex]$70 - Prescription Co-pay: \$[/tex]15 per prescription

The total monthly cost for Option B can be calculated as:
[tex]\[ \text{Total Cost for Option B} = \text{Monthly Premium} + (\text{Prescription Co-pay} \times \text{Number of Prescriptions}) \][/tex]
[tex]\[ \text{Total Cost for Option B} = \$70 + (\$15 \times 2) \][/tex]
[tex]\[ \text{Total Cost for Option B} = \$70 + \$30 \][/tex]
[tex]\[ \text{Total Cost for Option B} = \$100 \][/tex]

### Option C:
- Monthly Premium: \[tex]$90 - Prescription Co-pay: \$[/tex]10 per prescription

The total monthly cost for Option C can be calculated as:
[tex]\[ \text{Total Cost for Option C} = \text{Monthly Premium} + (\text{Prescription Co-pay} \times \text{Number of Prescriptions}) \][/tex]
[tex]\[ \text{Total Cost for Option C} = \$90 + (\$10 \times 2) \][/tex]
[tex]\[ \text{Total Cost for Option C} = \$90 + \$20 \][/tex]
[tex]\[ \text{Total Cost for Option C} = \$110 \][/tex]

### Option D:
- Monthly Premium: \[tex]$110 - Prescription Co-pay: \$[/tex]0 per prescription

The total monthly cost for Option D can be calculated as:
[tex]\[ \text{Total Cost for Option D} = \text{Monthly Premium} + (\text{Prescription Co-pay} \times \text{Number of Prescriptions}) \][/tex]
Since the prescription co-pay is \[tex]$0: \[ \text{Total Cost for Option D} = \$[/tex]110 + (\[tex]$0 \times 2) \] \[ \text{Total Cost for Option D} = \$[/tex]110 \]

Now, we summarize the total monthly costs for each option:
- Option A: \[tex]$90 - Option B: \$[/tex]100
- Option C: \[tex]$110 - Option D: \$[/tex]110

Comparing these costs, we see that Option A, with a total monthly cost of \$90, is the least expensive option.

Therefore, Emmeline's least expensive option is Option A.