Select the correct answer.

Find the sum: [tex]\left(3x^2 + 5x - 8\right) + \left(5x^2 - 13x - 5\right)[/tex]

A. [tex]8x^2 + 8x - 13[/tex]

B. [tex]8x^2 - x - 13[/tex]

C. [tex]8x^2 - 8x - 13[/tex]

D. [tex]8x^2 - 8x + 13[/tex]



Answer :

Sure! Let's find the sum of the expressions [tex]\(\left(3x^2 + 5x - 8\right)\)[/tex] and [tex]\(\left(5x^2 - 13x - 5\right)\)[/tex].

1. Identify the like terms in the given polynomials:

- The [tex]\(x^2\)[/tex] terms: [tex]\(3x^2\)[/tex] and [tex]\(5x^2\)[/tex]
- The [tex]\(x\)[/tex] terms: [tex]\(5x\)[/tex] and [tex]\(-13x\)[/tex]
- The constant terms: [tex]\(-8\)[/tex] and [tex]\(-5\)[/tex]

2. Add the coefficients of the like terms:

- For the [tex]\(x^2\)[/tex] terms: [tex]\(3x^2 + 5x^2\)[/tex]
[tex]\[ 3x^2 + 5x^2 = 8x^2 \][/tex]
- For the [tex]\(x\)[/tex] terms: [tex]\(5x + (-13x)\)[/tex]
[tex]\[ 5x - 13x = -8x \][/tex]
- For the constant terms: [tex]\(-8 + (-5)\)[/tex]
[tex]\[ -8 - 5 = -13 \][/tex]

3. Combine the results to form the final polynomial:
[tex]\[ 8x^2 - 8x - 13 \][/tex]

So, the sum of [tex]\(\left(3x^2 + 5x - 8\right)\)[/tex] and [tex]\(\left(5x^2 - 13x - 5\right)\)[/tex] is [tex]\(\boxed{8x^2 - 8x - 13}\)[/tex].

Therefore, the correct answer is:

C. [tex]\(\boxed{8x^2 - 8x - 13}\)[/tex]