Solve for the variable [tex]\( t \)[/tex].

[tex]\[
\begin{array}{ll}
t = 4f - V & \begin{array}{l}
f = 8 \\
v = 14
\end{array}
\end{array}
\][/tex]



Answer :

Sure, let's solve for the variable [tex]\( t \)[/tex] using the given equation and values step-by-step.

We have the equation:
[tex]\[ t = 4f - v \][/tex]

And we are given the values:
[tex]\[ f = 8 \][/tex]
[tex]\[ v = 14 \][/tex]

Now, we substitute these values into the equation:

1. Substitute [tex]\( f = 8 \)[/tex] into the equation:
[tex]\[ t = 4 \times 8 - v \][/tex]

2. Calculate [tex]\( 4 \times 8 \)[/tex]:
[tex]\[ 4 \times 8 = 32 \][/tex]

So the equation becomes:
[tex]\[ t = 32 - v \][/tex]

3. Substitute [tex]\( v = 14 \)[/tex] into the equation:
[tex]\[ t = 32 - 14 \][/tex]

4. Calculate [tex]\( 32 - 14 \)[/tex]:
[tex]\[ 32 - 14 = 18 \][/tex]

Therefore, the value of [tex]\( t \)[/tex] is:
[tex]\[ t = 18 \][/tex]