Answer :

Absolutely, let's work on rewriting the expression [tex]\(2(x+3)(x-1)\)[/tex] in its standard form, which is [tex]\(ax^2 + bx + c\)[/tex].

1. Start by identifying the original expression:
[tex]\[ 2(x+3)(x-1) \][/tex]

2. Distribute the factors:
First, let's distribute the [tex]\(x\)[/tex] and constant terms inside the parentheses [tex]\((x+3)\)[/tex] and [tex]\((x-1)\)[/tex].

[tex]\[ (x+3)(x-1) = x(x) + x(-1) + 3(x) + 3(-1) \][/tex]

3. Perform the multiplication:
[tex]\[ x^2 - x + 3x - 3 \][/tex]

4. Combine like terms:
[tex]\[ x^2 + 2x - 3 \][/tex]

5. Now, multiply this result by 2:
[tex]\[ 2(x^2 + 2x - 3) \][/tex]

6. Distribute the 2 across all terms inside the parentheses:
[tex]\[ 2 \cdot x^2 + 2 \cdot 2x + 2 \cdot (-3) \][/tex]

7. Simplify the multiplication:
[tex]\[ 2x^2 + 4x - 6 \][/tex]

So, the standard form of [tex]\(2(x+3)(x-1)\)[/tex] is:
[tex]\[ 2x^2 + 4x - 6 \][/tex]

This is the expanded form of the given expression.