Answer :

Sure, let's solve the given expression step-by-step:

We start with the expression:
[tex]\[ (a - 4ax)(a + 4ax) \][/tex]

To simplify this, we can use the difference of squares formula, which is:
[tex]\[ (A - B)(A + B) = A^2 - B^2 \][/tex]

Here, we identify [tex]\(A\)[/tex] and [tex]\(B\)[/tex] as follows:
[tex]\[ A = a \quad \text{and} \quad B = 4ax \][/tex]

Applying the formula:
[tex]\[ (a - 4ax)(a + 4ax) = a^2 - (4ax)^2 \][/tex]

Next, we need to square the term [tex]\(4ax\)[/tex]:
[tex]\[ (4ax)^2 = (4a)^2 \cdot x^2 = 16a^2x^2 \][/tex]

Putting this back into our expression, we get:
[tex]\[ a^2 - 16a^2x^2 \][/tex]

So, the simplified form of the expression [tex]\((a - 4ax)(a + 4ax)\)[/tex] is:
[tex]\[ a^2 - 16a^2x^2 \][/tex]

Therefore, the final result is:
[tex]\[ -(16a^2x^2) + a^2 = a^2 - 16a^2x^2 \][/tex]