Use the algebra tiles to determine the polynomial equivalent to this expression.

[tex]\[ \frac{z^2 + 4z - 12}{x - 2} \][/tex]

A. [tex]\( x^2 + 6x \)[/tex]

B. [tex]\( x + 6 \)[/tex]

C. [tex]\( -2x - 12 \)[/tex]

D. [tex]\( x - 12 \)[/tex]



Answer :

To find the polynomial equivalent to the expression [tex]\(\frac{z^2 + 4z - 12}{z - 2}\)[/tex], we can use polynomial division. Let's break down the division step by step.

1. Divide the leading term of the numerator ([tex]\(z^2\)[/tex]) by the leading term of the divisor ([tex]\(z\)[/tex]). This gives us:
[tex]\[ \frac{z^2}{z} = z \][/tex]
So, the first term in the quotient is [tex]\(z\)[/tex].

2. Multiply the entire divisor ([tex]\(z - 2\)[/tex]) by this leading term of the quotient ([tex]\(z\)[/tex]):
[tex]\[ z \cdot (z - 2) = z^2 - 2z \][/tex]

3. Subtract this product from the original polynomial ([tex]\(z^2 + 4z - 12\)[/tex]):
[tex]\[ (z^2 + 4z - 12) - (z^2 - 2z) = 4z - 2z - 12 = 6z - 12 \][/tex]

4. Now, divide the leading term of the resulting polynomial ([tex]\(6z\)[/tex]) by the leading term of the divisor ([tex]\(z\)[/tex]). This gives us:
[tex]\[ \frac{6z}{z} = 6 \][/tex]
So, the next term in the quotient is [tex]\(6\)[/tex].

5. Multiply the entire divisor ([tex]\(z - 2\)[/tex]) by this new term of the quotient ([tex]\(6\)[/tex]):
[tex]\[ 6 \cdot (z - 2) = 6z - 12 \][/tex]

6. Subtract this product from the previous remainder ([tex]\(6z - 12\)[/tex]):
[tex]\[ (6z - 12) - (6z - 12) = 0 \][/tex]

Since we end up with no remainder, we have completed the division. The quotient of the division is:

[tex]\[ z + 6 \][/tex]

Thus, the polynomial equivalent to [tex]\(\frac{z^2 + 4z - 12}{z - 2}\)[/tex] is:
[tex]\[ \boxed{z + 6} \][/tex]

Therefore, the correct answer is:
B. [tex]\(z + 6\)[/tex]