Using rational approximations, what statement is true?

A. [tex]\sqrt{49}\ \textless \ 7[/tex]
B. [tex]\sqrt{48}\ \textgreater \ \sqrt{36}[/tex]
C. [tex]\sqrt{49}\ \textgreater \ 7[/tex]
D. [tex]\sqrt{48}\ \textless \ \sqrt{36}[/tex]



Answer :

Let's evaluate each statement one by one using approximations of the square roots provided.

1. [tex]\(\sqrt{49} < 7\)[/tex]

Given:
[tex]\(\sqrt{49} = 7.0\)[/tex]

[tex]\[ 7.0 < 7 \][/tex]

This is false since 7.0 is equal to 7, not less than 7.

2. [tex]\(\sqrt{48} > \(\sqrt{36}\)[/tex]

Given:
[tex]\(\sqrt{48} = 6.928203230275509\)[/tex]
[tex]\(\sqrt{36} = 6.0\)[/tex]

[tex]\[ 6.928203230275509 > 6 \][/tex]

This is true because 6.928203230275509 is indeed greater than 6.

3. [tex]\(\sqrt{49} > 7\)[/tex]

Given:
[tex]\(\sqrt{49} = 7.0\)[/tex]

[tex]\[ 7.0 > 7 \][/tex]

This is false since 7.0 is equal to 7, not greater than 7.

4. [tex]\(\sqrt{48} < \(\sqrt{36}\)[/tex]

Given:
[tex]\(\sqrt{48} = 6.928203230275509\)[/tex]
[tex]\(\sqrt{36} = 6.0\)[/tex]

[tex]\[ 6.928203230275509 < 6 \][/tex]

This is false because 6.928203230275509 is greater than 6, not less than 6.

Hence, the correct and true statement is:
[tex]\(\sqrt{48} > \sqrt{36}\)[/tex].