What is the equation for the vertical asymptote of the function shown below?

[tex]\[ f(x)=\frac{3x^4-3}{2x-5} \][/tex]

A. [tex]\(x=\frac{3}{2}\)[/tex]
B. [tex]\(y=x^3-2\)[/tex]
C. [tex]\(x=\frac{3}{5}\)[/tex]
D. [tex]\(x=\frac{5}{2}\)[/tex]



Answer :

To determine the vertical asymptote of the function
[tex]\[ f(x) = \frac{3x^4 - 3}{2x - 5} \][/tex]
we need to identify where the denominator of the function equals zero, since division by zero is undefined. The vertical asymptote occurs at these points.

Step-by-step, let's follow this approach:

1. Find the zero of the denominator:
The denominator of the function is [tex]\( 2x - 5 \)[/tex]. To find the value of [tex]\( x \)[/tex] that makes this expression zero, we set:
[tex]\[ 2x - 5 = 0 \][/tex]

2. Solve for [tex]\( x \)[/tex]:
To solve the equation [tex]\( 2x - 5 = 0 \)[/tex], we perform the following steps:
[tex]\[ 2x - 5 = 0 \][/tex]
Add 5 to both sides:
[tex]\[ 2x = 5 \][/tex]
Divide both sides by 2:
[tex]\[ x = \frac{5}{2} \][/tex]

Therefore, the vertical asymptote of the function [tex]\( f(x) = \frac{3x^4 - 3}{2x - 5} \)[/tex] is at
[tex]\[ x = \frac{5}{2} \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{x = \frac{5}{2}} \][/tex]