Find the difference between the cubes of each pair using patterns.

a. [tex]\(18, 19\)[/tex]

b. [tex]\(25, 26\)[/tex]

c. [tex]\(100, 101\)[/tex]

d. [tex]\(77, 78\)[/tex]

e. [tex]\(133, 134\)[/tex]



Answer :

Alright, let's solve the problem of finding the difference between the cubes for each given pair by relying on established patterns and properties of cubes.

### Step-by-Step Solution:

1. Understanding the Cubes Difference Formula:

The difference between the cubes of two consecutive numbers [tex]\(a\)[/tex] and [tex]\(b\)[/tex] (where [tex]\(b = a + 1\)[/tex]) can be found using the formula:
[tex]\[ b^3 - a^3 = (a + 1)^3 - a^3 \][/tex]

2. Using Patterns:

By recognizing the properties of cubes of consecutive integers, and based on the earlier calculated answers for this type of question where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] differ by 1, we can identify a pattern:

For any consecutive integers [tex]\(a\)[/tex] and [tex]\(b = a + 1\)[/tex]:
[tex]\[ b^3 - a^3 = 3a^2 + 3a + 1 \][/tex]

### Applying this Pattern:

a. Pair (18, 19)

Using the established pattern formula:
[tex]\[ 19^3 - 18^3 = 1027 \][/tex]

b. Pair (25, 26)

Using the established pattern formula:
[tex]\[ 26^3 - 25^3 = 1951 \][/tex]

c. Pair (100, 101)

Using the established pattern formula:
[tex]\[ 101^3 - 100^3 = 30301 \][/tex]

d. Pair (77, 78)

Using the established pattern formula:
[tex]\[ 78^3 - 77^3 = 18019 \][/tex]

e. Pair (133, 134)

Using the established pattern formula:
[tex]\[ 134^3 - 133^3 = 53467 \][/tex]

### Conclusion:

The differences between the cubes of each pair are:

- For pair (18, 19): [tex]\( 1027 \)[/tex]
- For pair (25, 26): [tex]\( 1951 \)[/tex]
- For pair (100, 101): [tex]\( 30301 \)[/tex]
- For pair (77, 78): [tex]\( 18019 \)[/tex]
- For pair (133, 134): [tex]\( 53467 \)[/tex]

These calculated differences conform to the established pattern and solve the given problem accurately.