Answer :

To solve this problem, we need to perform scalar multiplication of a matrix. Scalar multiplication involves multiplying each element of the matrix by the given scalar.

Given matrix:
[tex]\[ \left[\begin{array}{ccc} 4 & 0 & 1 \\ -1 & 5 & 2 \end{array}\right] \][/tex]
Given scalar: [tex]\( 3 \)[/tex]

We need to multiply each element of the matrix by [tex]\( 3 \)[/tex].

Step-by-step multiplication:

1. Multiply [tex]\( 4 \)[/tex] by [tex]\( 3 \)[/tex]:
[tex]\[ 3 \times 4 = 12 \][/tex]

2. Multiply [tex]\( 0 \)[/tex] by [tex]\( 3 \)[/tex]:
[tex]\[ 3 \times 0 = 0 \][/tex]

3. Multiply [tex]\( 1 \)[/tex] by [tex]\( 3 \)[/tex]:
[tex]\[ 3 \times 1 = 3 \][/tex]

4. Multiply [tex]\( -1 \)[/tex] by [tex]\( 3 \)[/tex]:
[tex]\[ 3 \times -1 = -3 \][/tex]

5. Multiply [tex]\( 5 \)[/tex] by [tex]\( 3 \)[/tex]:
[tex]\[ 3 \times 5 = 15 \][/tex]

6. Multiply [tex]\( 2 \)[/tex] by [tex]\( 3 \)[/tex]:
[tex]\[ 3 \times 2 = 6 \][/tex]

Combining these results, the resulting matrix is:
[tex]\[ \left[\begin{array}{ccc} 12 & 0 & 3 \\ -3 & 15 & 6 \end{array}\right] \][/tex]

So, after multiplying the given matrix by the scalar 3, we get:
[tex]\[ \left[\begin{array}{ccc} 12 & 0 & 3 \\ -3 & 15 & 6 \end{array}\right] \][/tex]