a-1. After a number of complaints about its directory assistance, a telephone company examined samples of calls to determine the frequency of wrong numbers given to callers. Each sample consisted of 100 calls. The manager stated that the error rate is about 3 percent. Construct a control chart using 98 percent limits and using [tex]\bar{p}=0.03[/tex]. (Round the final answers to 3 decimal places.)

[tex]\[
\begin{tabular}{lll}
& UCL & LCL \\
\hline
Control Limits & \_\_\_\_\_\_ & \_\_\_\_\_\_ \\
\end{tabular}
\][/tex]

a-2. Based on the manager's assumption of the process error rate, is the process in control?

A. Yes
B. No



Answer :

To construct a control chart using 98% limits for the given problem, let's follow these steps in detail:

### Step-by-Step Solution

Step 1: Determine the proportions and given parameters
- Average proportion of errors, [tex]\(\bar{p} = 0.03\)[/tex]
- Sample size, [tex]\(n = 100\)[/tex]
- Z-score for 98% control limits, [tex]\(z = 2.33\)[/tex]

Step 2: Calculate the standard error

The standard error for the proportion is given by the formula:
[tex]\[ SE = \sqrt{\frac{\bar{p}(1 - \bar{p})}{n}} \][/tex]

Plugging in the values:
[tex]\[ SE = \sqrt{\frac{0.03 \times (1 - 0.03)}{100}} = \sqrt{\frac{0.03 \times 0.97}{100}} = \sqrt{0.000291} \approx 0.017 \][/tex]

Step 3: Calculate the Upper Control Limit (UCL)

The UCL is calculated as:
[tex]\[ UCL = \bar{p} + z \times SE \][/tex]

Substituting [tex]\(\bar{p} = 0.03\)[/tex], [tex]\(z = 2.33\)[/tex], and [tex]\(SE = 0.017\)[/tex]:
[tex]\[ UCL = 0.03 + 2.33 \times 0.017 = 0.03 + 0.03961 \approx 0.07 \][/tex]

Step 4: Calculate the Lower Control Limit (LCL)

The LCL is calculated as:
[tex]\[ LCL = \bar{p} - z \times SE \][/tex]

Substituting [tex]\(\bar{p} = 0.03\)[/tex], [tex]\(z = 2.33\)[/tex], and [tex]\(SE = 0.017\)[/tex]:
[tex]\[ LCL = 0.03 - 2.33 \times 0.017 = 0.03 - 0.03961 = -0.0096 \][/tex]

Since the LCL cannot be less than 0:
[tex]\[ LCL = \max(0, -0.0096) = 0 \][/tex]

Step 5: Assemble the control limits table

[tex]\[ \begin{tabular}{lll} & UCL & LCL \\ Control Limits & 0.070 & 0 \\ \hline \end{tabular} \][/tex]

### Conclusion

a-1 Control Limits:

[tex]\[ \begin{tabular}{lll} & UCL & LCL \\ Control Limits & 0.070 & 0 \\ \hline \end{tabular} \][/tex]

a-2 Process Control Status:

Based on the manager's assumption of the process error rate (which is [tex]\(\bar{p} = 0.03\)[/tex]), the process appears to be within the control limits (0 and 0.070). Therefore, the process is in control.

Is the process in control?
Yes