Answer :
Certainly! Let's provide the justifications for each step in solving the given equation:
1. Initial Equation:
[tex]\[ \frac{17}{3} - \frac{3}{4} x = \frac{1}{2} x + 5 \][/tex]
Justification: Given Equation
2. Subtract [tex]\(\frac{17}{3}\)[/tex] from both sides:
[tex]\[ \frac{17}{3} - \frac{3}{4} x - \frac{17}{3} = \frac{1}{2} x + 5 - \frac{17}{3} \][/tex]
Justification: Subtraction property of equality
3. Simplify:
[tex]\[ -\frac{3}{4} x = \frac{1}{2} x - \frac{2}{3} \][/tex]
Justification: Simplification
4. Subtract [tex]\(\frac{1}{2} x\)[/tex] from both sides:
[tex]\[ -\frac{3}{4} x - \frac{1}{2} x = \frac{1}{2} x - \frac{2}{3} - \frac{1}{2} x \][/tex]
Justification: Subtraction property of equality
5. Simplify:
[tex]\[ -\frac{5}{4} x = -\frac{2}{3} \][/tex]
Justification: Simplification
6. Multiply both sides by [tex]\(-\frac{4}{5}\)[/tex]:
[tex]\[ -\frac{5}{4} x \cdot -\frac{4}{5} = -\frac{2}{3} \cdot -\frac{4}{5} \][/tex]
Justification: Multiplication property of equality
7. Simplify:
[tex]\[ x = \frac{8}{15} \][/tex]
Justification: Simplification
To summarize, the step-by-step justifications are:
1. Given Equation
2. Subtraction property of equality
3. Simplification
4. Subtraction property of equality
5. Simplification
6. Multiplication property of equality
7. Simplification
This organizes the justifications corresponding to each step in the solution process.
1. Initial Equation:
[tex]\[ \frac{17}{3} - \frac{3}{4} x = \frac{1}{2} x + 5 \][/tex]
Justification: Given Equation
2. Subtract [tex]\(\frac{17}{3}\)[/tex] from both sides:
[tex]\[ \frac{17}{3} - \frac{3}{4} x - \frac{17}{3} = \frac{1}{2} x + 5 - \frac{17}{3} \][/tex]
Justification: Subtraction property of equality
3. Simplify:
[tex]\[ -\frac{3}{4} x = \frac{1}{2} x - \frac{2}{3} \][/tex]
Justification: Simplification
4. Subtract [tex]\(\frac{1}{2} x\)[/tex] from both sides:
[tex]\[ -\frac{3}{4} x - \frac{1}{2} x = \frac{1}{2} x - \frac{2}{3} - \frac{1}{2} x \][/tex]
Justification: Subtraction property of equality
5. Simplify:
[tex]\[ -\frac{5}{4} x = -\frac{2}{3} \][/tex]
Justification: Simplification
6. Multiply both sides by [tex]\(-\frac{4}{5}\)[/tex]:
[tex]\[ -\frac{5}{4} x \cdot -\frac{4}{5} = -\frac{2}{3} \cdot -\frac{4}{5} \][/tex]
Justification: Multiplication property of equality
7. Simplify:
[tex]\[ x = \frac{8}{15} \][/tex]
Justification: Simplification
To summarize, the step-by-step justifications are:
1. Given Equation
2. Subtraction property of equality
3. Simplification
4. Subtraction property of equality
5. Simplification
6. Multiplication property of equality
7. Simplification
This organizes the justifications corresponding to each step in the solution process.