Answer :
To find the value of [tex]\( y \)[/tex] in the given system of equations:
[tex]\[ \begin{align*} 3x - 4y &= -20 \quad \text{(Equation 1)} \\ -x + 2y &= 10 \quad \text{(Equation 2)} \end{align*} \][/tex]
Follow these steps:
1. Solve for one variable in terms of the other using one of the equations.
From Equation 2, isolate [tex]\( x \)[/tex]:
[tex]\[ -x + 2y = 10 \][/tex]
Add [tex]\( x \)[/tex] to both sides:
[tex]\[ 2y = x + 10 \][/tex]
Subtract 10 from both sides:
[tex]\[ x = 2y - 10 \][/tex]
2. Substitute this expression for [tex]\( x \)[/tex] into Equation 1.
Substitute [tex]\( x = 2y - 10 \)[/tex] into [tex]\( 3x - 4y = -20 \)[/tex]:
[tex]\[ 3(2y - 10) - 4y = -20 \][/tex]
Expand the equation:
[tex]\[ 6y - 30 - 4y = -20 \][/tex]
Combine like terms:
[tex]\[ 2y - 30 = -20 \][/tex]
3. Solve for [tex]\( y \)[/tex].
Add 30 to both sides:
[tex]\[ 2y = 10 \][/tex]
Divide both sides by 2:
[tex]\[ y = 5 \][/tex]
Thus, the value of [tex]\( y \)[/tex] in the given system of equations is:
[tex]\[ \boxed{5} \][/tex]
[tex]\[ \begin{align*} 3x - 4y &= -20 \quad \text{(Equation 1)} \\ -x + 2y &= 10 \quad \text{(Equation 2)} \end{align*} \][/tex]
Follow these steps:
1. Solve for one variable in terms of the other using one of the equations.
From Equation 2, isolate [tex]\( x \)[/tex]:
[tex]\[ -x + 2y = 10 \][/tex]
Add [tex]\( x \)[/tex] to both sides:
[tex]\[ 2y = x + 10 \][/tex]
Subtract 10 from both sides:
[tex]\[ x = 2y - 10 \][/tex]
2. Substitute this expression for [tex]\( x \)[/tex] into Equation 1.
Substitute [tex]\( x = 2y - 10 \)[/tex] into [tex]\( 3x - 4y = -20 \)[/tex]:
[tex]\[ 3(2y - 10) - 4y = -20 \][/tex]
Expand the equation:
[tex]\[ 6y - 30 - 4y = -20 \][/tex]
Combine like terms:
[tex]\[ 2y - 30 = -20 \][/tex]
3. Solve for [tex]\( y \)[/tex].
Add 30 to both sides:
[tex]\[ 2y = 10 \][/tex]
Divide both sides by 2:
[tex]\[ y = 5 \][/tex]
Thus, the value of [tex]\( y \)[/tex] in the given system of equations is:
[tex]\[ \boxed{5} \][/tex]