Certainly! We want to solve for [tex]\( t \)[/tex] using the given equation:
[tex]\[
t = \frac{z + x}{y}
\][/tex]
We are given the values:
[tex]\[
x = 12, \quad y = 8, \quad z = 4
\][/tex]
Substitute the given values into the equation:
[tex]\[
t = \frac{4 + 12}{8}
\][/tex]
Now, perform the addition in the numerator:
[tex]\[
4 + 12 = 16
\][/tex]
So the equation becomes:
[tex]\[
t = \frac{16}{8}
\][/tex]
Next, perform the division:
[tex]\[
\frac{16}{8} = 2
\][/tex]
Therefore, the value of [tex]\( t \)[/tex] is:
[tex]\[
t = 2.0
\][/tex]