Select the response that best represents the domain for this function.

\begin{tabular}{|c|c|c|}
\hline Point & [tex]$\pi$[/tex] & [tex]$f(x)$[/tex] \\
\hline S & -16.40 & -7.08 \\
\hline T & -12.84 & -0.76 \\
\hline U & -9.27 & -1.64 \\
\hline V & -6.33 & 0 \\
\hline W & -1.33 & 5.91 \\
\hline X & 0 & 4.74 \\
\hline Y & 1.41 & 0 \\
\hline Z & 2.40 & -6.37 \\
\hline
\end{tabular}

A. [tex]$(-\infty,-6.33)$[/tex]
B. [tex]$(-\infty, \infty)$[/tex]
C. [tex]$(-\infty,-1.64)$[/tex]
D. [tex]$(-\infty, 5.91)$[/tex]



Answer :

To determine the domain of the function based on the given points, we need to consider all possible [tex]\( x \)[/tex]-values (input values) for which the function is defined.

The given points with their respective [tex]\( x \)[/tex]-values are:

[tex]\[ \begin{align*} S & : -16.40 \\ T & : -12.84 \\ U & : -9.27 \\ V & : -6.33 \\ W & : -1.33 \\ X & : 0 \\ Y & : 1.41 \\ Z & : 2.40 \\ \end{align*} \][/tex]

Observing these [tex]\( x \)[/tex]-values, the function appears to be defined for all given inputs, which range from the smallest [tex]\( x \)[/tex]-value to the largest. Thus, the function is defined for any input value, implying that the domain includes all real numbers.

Therefore, the best representation of the domain for this function is:

[tex]\[ (-\infty, \infty) \][/tex]

So, the correct response is:

[tex]\[ (-\infty, \infty) \][/tex]