Solve the problem.

A power company burns coal to generate electricity. The cost [tex]\( C(x) \)[/tex] (in [tex]\( \$ 1000 \)[/tex] ) to remove [tex]\( x \% \)[/tex] of the air pollutants is given by:

[tex]\[
\bar{C}(x) = \frac{500 x}{140 - x}
\][/tex]

a. Compute the cost to remove [tex]\( 25 \% \)[/tex] of the air pollutants.
b. If the power company budgets [tex]\( \$ 1.4 \)[/tex] million for pollution control, what percentage of the air pollutants can be removed?

Select one:

A. a. [tex]\(\frac{2500}{23}\)[/tex]
b. [tex]\(103.16 \%\)[/tex]

B. a. [tex]\(\frac{2500000}{23}\)[/tex]
b. [tex]\(135.17 \%\)[/tex]

C. a. [tex]\(\frac{2500}{23}\)[/tex]
b. [tex]\(135.17 \%\)[/tex]

D. a. [tex]\(\frac{2500000}{23}\)[/tex]
b. [tex]\(103.16 \%\)[/tex]



Answer :

Let's break down the problem step-by-step:

### Part (a): Compute the cost to remove [tex]\( 25\% \)[/tex] of the air pollutants

We are given the cost function:
[tex]\[ C(x) = \frac{500x}{140 - x} \][/tex]
We need to evaluate this function at [tex]\( x = 25 \)[/tex].

Substituting [tex]\( x = 25 \)[/tex] into the function:
[tex]\[ C(25) = \frac{500 \cdot 25}{140 - 25} \][/tex]
Simplify the expression:
[tex]\[ C(25) = \frac{12500}{115} \][/tex]
This simplifies to approximately:
[tex]\[ C(25) \approx 108.69565217391305 \][/tex]

Therefore, the cost to remove [tex]\( 25\% \)[/tex] of the air pollutants is approximately [tex]\( \frac{2500}{23} \)[/tex] in thousand dollars.

### Part (b): Determine the percentage of air pollutants removed with a budget of [tex]\( \$1.4 \)[/tex] million

The power company has a budget of [tex]\( \$1.4 \)[/tex] million for pollution control. Convert this budget to thousand dollars since the cost function [tex]\( C(x) \)[/tex] is in thousand dollars:
[tex]\[ \text{Budget} = 1.4 \text{ million dollars} = 1400 \text{ thousand dollars} \][/tex]

We know [tex]\( \frac{140 \cdot \text{Budget}}{500 + \text{Budget}} \)[/tex] provides the percentage of pollutants removed.

Using the budget of 1400:
[tex]\[ \text{Percentage removed} = \frac{140 \cdot 1400}{500 + 1400} \][/tex]
[tex]\[ \text{Percentage removed} = \frac{196000}{1900} \][/tex]
This simplifies to:
[tex]\[ \text{Percentage removed} \approx 103.15789473684211 \][/tex]

Therefore, with a budget of [tex]\( \$1.4 \)[/tex] million, approximately [tex]\( 103.16 \% \)[/tex] of the air pollutants can be removed.

### Summary of Results

a. The cost to remove [tex]\( 25\% \)[/tex] of the air pollutants: [tex]\( \frac{2500}{23} \)[/tex]
b. The percentage of air pollutants removed with a budget of [tex]\( \$1.4 \)[/tex] million: [tex]\( 103.16\% \)[/tex]

Given these results, the correct answer from the listed options is:

d. a. [tex]\( \frac{2500000}{23} \)[/tex]; b. [tex]\( 103.16 \% \)[/tex]