Select the equivalent expression.

[tex]\[
\left(3^{-8} \cdot 7^3\right)^{-2} = ?
\][/tex]

Choose 1 answer:

A. [tex]\( 21^{10} \)[/tex]

B. [tex]\( \frac{7^6}{3^{16}} \)[/tex]

C. [tex]\( 3^{16} \cdot 7^{-6} \)[/tex]



Answer :

To simplify the given expression [tex]\(\left(3^{-8} \cdot 7^3\right)^{-2}\)[/tex], let's proceed step-by-step:

1. Apply the outer exponent [tex]\(-2\)[/tex] to each term inside the parentheses:
[tex]\[ \left(3^{-8} \cdot 7^3\right)^{-2} \][/tex]
This can be rewritten as applying the exponent to each individual part:
[tex]\[ (3^{-8})^{-2} \cdot (7^3)^{-2} \][/tex]

2. Simplify each term separately:
[tex]\[ (3^{-8})^{-2} \quad \text{and} \quad (7^3)^{-2} \][/tex]

3. Use the property of exponents [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ (3^{-8})^{-2} = 3^{-8 \cdot (-2)} = 3^{16} \][/tex]
[tex]\[ (7^3)^{-2} = 7^{3 \cdot (-2)} = 7^{-6} \][/tex]

4. Combine the results:
[tex]\[ (3^{-8} \cdot 7^3)^{-2} = 3^{16} \cdot 7^{-6} \][/tex]

Comparing the simplified expression [tex]\(3^{16} \cdot 7^{-6}\)[/tex] with the given choices:
- (A) [tex]\(21^{10}\)[/tex]
- (B) [tex]\(\frac{7^6}{3^{16}}\)[/tex]
- (C) [tex]\(3^{16} \cdot 7^{-6}\)[/tex]

The correct answer is:
(C) [tex]\(3^{16} \cdot 7^{-6}\)[/tex]