Answer :
Certainly! Let's break down the solution to the question step-by-step.
### Steps to solve:
Given the expressions:
1. [tex]\(\frac{6}{8 \Delta}\)[/tex]
2. [tex]\(\frac{5}{48}\)[/tex]
3. [tex]\(\frac{6+5}{8} \)[/tex]
4. [tex]\(\frac{11}{8} \)[/tex]
We aim to use errorless logical steps to reach the understanding:
### Step 1: Combine the fractions [tex]\(\frac{6}{8 \Delta}\)[/tex] and [tex]\(\frac{5}{48}\)[/tex]
Initially, we have two fractions to aggregate:
[tex]$ \frac{6}{8 \Delta} + \frac{5}{48} $[/tex]
### Step 2: Recognize equivalent terms
From the given problem, we recognize that:
[tex]$ \frac{6}{8 \Delta} + \frac{5}{48} = \frac{11}{8} $[/tex]
### Step 3: Simplify and break down fractions
Combining these two terms correctly, we further notice that:
[tex]$ \frac{6}{8 \Delta} + \frac{5}{48} = \frac{6 + 5}{8} = \frac{11}{8} $[/tex]
### Step 4: Convert the final fraction to a decimal
Next, we focus on the fraction [tex]\(\frac{11}{8}\)[/tex] to convert it into a decimal value:
[tex]$ \frac{11}{8} = 1.375 $[/tex]
### Step 5: Contextualize the result in practical terms
Let's explain the practical meaning:
Violeta took [tex]\( \frac{11}{8} \)[/tex] liters of milk. When converted to decimal form, it equals:
[tex]$ \frac{11}{8} = 1.375 \text { liters} $[/tex]
### Conclusion
Thus, Violeta drank a total of [tex]\(1.375\)[/tex] liters of milk.
### Steps to solve:
Given the expressions:
1. [tex]\(\frac{6}{8 \Delta}\)[/tex]
2. [tex]\(\frac{5}{48}\)[/tex]
3. [tex]\(\frac{6+5}{8} \)[/tex]
4. [tex]\(\frac{11}{8} \)[/tex]
We aim to use errorless logical steps to reach the understanding:
### Step 1: Combine the fractions [tex]\(\frac{6}{8 \Delta}\)[/tex] and [tex]\(\frac{5}{48}\)[/tex]
Initially, we have two fractions to aggregate:
[tex]$ \frac{6}{8 \Delta} + \frac{5}{48} $[/tex]
### Step 2: Recognize equivalent terms
From the given problem, we recognize that:
[tex]$ \frac{6}{8 \Delta} + \frac{5}{48} = \frac{11}{8} $[/tex]
### Step 3: Simplify and break down fractions
Combining these two terms correctly, we further notice that:
[tex]$ \frac{6}{8 \Delta} + \frac{5}{48} = \frac{6 + 5}{8} = \frac{11}{8} $[/tex]
### Step 4: Convert the final fraction to a decimal
Next, we focus on the fraction [tex]\(\frac{11}{8}\)[/tex] to convert it into a decimal value:
[tex]$ \frac{11}{8} = 1.375 $[/tex]
### Step 5: Contextualize the result in practical terms
Let's explain the practical meaning:
Violeta took [tex]\( \frac{11}{8} \)[/tex] liters of milk. When converted to decimal form, it equals:
[tex]$ \frac{11}{8} = 1.375 \text { liters} $[/tex]
### Conclusion
Thus, Violeta drank a total of [tex]\(1.375\)[/tex] liters of milk.