[tex]\[
\frac{6}{8 \Delta} + \frac{5}{48} = \frac{6 + 5}{8} = \frac{11}{8}
\][/tex]

Violeta tomó [tex]\(\frac{11}{8}\)[/tex] litro de leche.

[tex]\[
11 \div 8 = 1.375 \text{ litros.}
\][/tex]

Por lo tanto, Violeta tomó un total de 1.375 litros de leche.



Answer :

Certainly! Let's break down the solution to the question step-by-step.

### Steps to solve:

Given the expressions:
1. [tex]\(\frac{6}{8 \Delta}\)[/tex]
2. [tex]\(\frac{5}{48}\)[/tex]
3. [tex]\(\frac{6+5}{8} \)[/tex]
4. [tex]\(\frac{11}{8} \)[/tex]

We aim to use errorless logical steps to reach the understanding:

### Step 1: Combine the fractions [tex]\(\frac{6}{8 \Delta}\)[/tex] and [tex]\(\frac{5}{48}\)[/tex]

Initially, we have two fractions to aggregate:
[tex]$ \frac{6}{8 \Delta} + \frac{5}{48} $[/tex]

### Step 2: Recognize equivalent terms

From the given problem, we recognize that:
[tex]$ \frac{6}{8 \Delta} + \frac{5}{48} = \frac{11}{8} $[/tex]

### Step 3: Simplify and break down fractions

Combining these two terms correctly, we further notice that:
[tex]$ \frac{6}{8 \Delta} + \frac{5}{48} = \frac{6 + 5}{8} = \frac{11}{8} $[/tex]

### Step 4: Convert the final fraction to a decimal

Next, we focus on the fraction [tex]\(\frac{11}{8}\)[/tex] to convert it into a decimal value:
[tex]$ \frac{11}{8} = 1.375 $[/tex]

### Step 5: Contextualize the result in practical terms

Let's explain the practical meaning:
Violeta took [tex]\( \frac{11}{8} \)[/tex] liters of milk. When converted to decimal form, it equals:
[tex]$ \frac{11}{8} = 1.375 \text { liters} $[/tex]

### Conclusion

Thus, Violeta drank a total of [tex]\(1.375\)[/tex] liters of milk.