Write the logarithmic expression as a single logarithm with coefficient 1, and simplify as much as possible.

[tex]\[
\frac{1}{2}[6 \ln (x-3) + \ln x - 2 \ln x]
\][/tex]

Select one:
a. [tex]\(\ln \left[\frac{\sqrt{x}(x-3)^3}{2 x}\right]\)[/tex]
b. [tex]\(\ln \left[\frac{(x-3)^3}{x}\right]\)[/tex]
c. [tex]\(\ln \left[\frac{(x-3)^6}{2 x}\right]\)[/tex]
d. [tex]\(\ln \left[\frac{(x-3)^3}{\sqrt{x}}\right]\)[/tex]



Answer :

To simplify the given logarithmic expression:
[tex]\[ \frac{1}{2}[6 \ln (x-3) + \ln x - 2 \ln x] \][/tex]

we follow these steps:

1. Combine like terms inside the brackets:

Begin by combining the logarithmic terms in the brackets. Given expression inside the brackets is:

[tex]\[ 6 \ln (x-3) + \ln x - 2 \ln x \][/tex]

Simplify [tex]\(\ln x - 2 \ln x\)[/tex] to get:

[tex]\[ \ln x - 2 \ln x = -\ln x \][/tex]

So, the expression inside the brackets becomes:

[tex]\[ 6 \ln (x-3) - \ln x \][/tex]

2. Distribute the [tex]\(\frac{1}{2}\)[/tex] coefficient:

Next, distribute the [tex]\(\frac{1}{2}\)[/tex] coefficient to each term inside the brackets:

[tex]\[ \frac{1}{2}[6 \ln (x-3) - \ln x] \][/tex]

This results in:

[tex]\[ \frac{1}{2} \cdot 6 \ln (x-3) - \frac{1}{2} \ln x \][/tex]

Which simplifies to:

[tex]\[ 3 \ln (x-3) - \frac{1}{2} \ln x \][/tex]

3. Write as a single logarithm:

Apply the property of logarithms that states [tex]\( a \ln b = \ln b^a \)[/tex] to each term:

[tex]\[ 3 \ln (x-3) = \ln (x-3)^3 \quad \text{and} \quad \frac{-1}{2} \ln x = \ln x^{-\frac{1}{2}} \][/tex]

So, the expression becomes:

[tex]\[ \ln (x-3)^3 - \ln x^{\frac{1}{2}} \][/tex]

4. Combine the logarithms using the subtraction rule:

Recall the property of logarithms that states [tex]\( \ln A - \ln B = \ln \left( \frac{A}{B} \right) \)[/tex]:

[tex]\[ \ln \left( \frac{(x-3)^3}{x^{\frac{1}{2}}} \right) \][/tex]

Finally, this expression simplifies to:

[tex]\[ \ln \left(\frac{(x-3)^3}{\sqrt{x}}\right) \][/tex]

Therefore, the correct answer is:

d. [tex]\(\ln \left(\frac{(x-3)^3}{\sqrt{x}}\right)\)[/tex]