Solve the equation.

[tex]\[ 5^{2y} = 625 \][/tex]

Select one:
a. [tex]\(\{2\}\)[/tex]
b. [tex]\(\{3\}\)[/tex]
c. [tex]\(\{4\}\)[/tex]
d. [tex]\(\{25\}\)[/tex]



Answer :

To solve the equation [tex]\( 5^{2y} = 625 \)[/tex], we will use the properties of exponents and logarithms.

1. Rewrite 625 as a power of 5:

We know that:
[tex]\[ 625 = 5^4 \][/tex]

So, we can rewrite the equation as:
[tex]\[ 5^{2y} = 5^4 \][/tex]

2. Use the property of exponents that states if [tex]\( a^m = a^n \)[/tex], then [tex]\( m = n \)[/tex]:

Since the bases are the same (5), we can set the exponents equal to each other:
[tex]\[ 2y = 4 \][/tex]

3. Solve for [tex]\( y \)[/tex]:

Divide both sides of the equation by 2:
[tex]\[ y = \frac{4}{2} = 2 \][/tex]

Therefore, the solution to the equation [tex]\( 5^{2y} = 625 \)[/tex] is:
[tex]\[ y = 2 \][/tex]

Thus, the correct answer is:

a. [tex]\(\{2\}\)[/tex]