Write the augmented matrix for the given system.

[tex]\[
\begin{array}{l}
7x + 9 = -7z \\
-4x + 4z = -8 - 6y \\
-3x - 7y + 9z = 2
\end{array}
\][/tex]

Select one:

a. [tex]\[
\left[
\begin{array}{rrr|r}
7 & 0 & 7 & -9 \\
-4 & 6 & 4 & -8 \\
-3 & -7 & 9 & 2
\end{array}
\right]
\][/tex]

b. [tex]\[
\left[
\begin{array}{rrr|r}
7 & 0 & 9 & -7 \\
-4 & -6 & 4 & -8 \\
-3 & -7 & 9 & 2
\end{array}
\right]
\][/tex]

c. [tex]\[
\left[
\begin{array}{rrr|r}
7 & 0 & -7 & 9 \\
-4 & -6 & 4 & -8 \\
-3 & -7 & 9 & 2
\end{array}
\right]
\][/tex]

d. [tex]\[
\left[
\begin{array}{rrr|r}
7 & 0 & 7 & 0 \\
-4 & -6 & 4 & 0 \\
-3 & -7 & 9 & 0
\end{array}
\right]
\][/tex]



Answer :

To write the augmented matrix for the given system of equations, we first need to ensure that each equation is in the standard form [tex]\(Ax + By + Cz = D\)[/tex].

First, let's align all the equations properly:

1. [tex]\(7x + 9 = -7z\)[/tex]

Rearrange to:
[tex]\[ 7x + 7z = -9 \][/tex]

2. [tex]\(-4x + 4z = -8 - 6y\)[/tex]

Rearrange to:
[tex]\[ -4x - 6y + 4z = -8 \][/tex]

3. [tex]\(-3x - 7y + 9z = 2\)[/tex]

Now, let's put these equations into matrix form. We do this by taking the coefficients of [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex] and placing them into a matrix, and then creating an augmented matrix with the constants on the right side of the equations.

[tex]\[ \begin{array}{ccc|c} 7 & 0 & 7 & -9 \\ -4 & -6 & 4 & -8 \\ -3 & -7 & 9 & 2 \\ \end{array} \][/tex]

With this information, the correct matrix representation of the system is:

[tex]\[ \left[\begin{array}{rrr|r} 7 & 0 & 7 & -9 \\ -4 & -6 & 4 & -8 \\ -3 & -7 & 9 & 2 \end{array}\right] \][/tex]

So, the correct answer is:
a.
[tex]\(\left[\begin{array}{rrr|r}7 & 0 & 7 & -9 \\ -4 & 6 & 4 & -8 \\ -3 & -7 & 9 & 2\end{array}\right]\)[/tex]