Use the table to find [tex]\( n \)[/tex] when [tex]\( n = 4 \)[/tex].

[tex]\[
\begin{array}{l}
n = 5 \\
n = 5 \\
n \times 5 \quad \alpha \\
n = 9 \\
9 \times 9 \\
n = 10 \\
\{n + n = 9\} \\
\end{array}
\][/tex]

Given that [tex]\( t = \frac{k m^2 L}{t^2} \)[/tex],

Make [tex]\( m \)[/tex] the subject. Find the value of [tex]\( m \)[/tex] when [tex]\( h = 1 \)[/tex], [tex]\( t = 6 \)[/tex], [tex]\( k = 2 \)[/tex], and [tex]\( c = 3 \)[/tex].

[tex]\[
\begin{array}{l}
L. \\
h t^2 = \operatorname{lem}^2 \\
\end{array}
\][/tex]



Answer :

Certainly! Let's go through the given problem step-by-step to find [tex]\( m \)[/tex] given the variables [tex]\( h \)[/tex], [tex]\( t \)[/tex], [tex]\( c \)[/tex], and [tex]\( k \)[/tex].

We’re given the following variables:
- [tex]\( h = 1 \)[/tex]
- [tex]\( t = 6 \)[/tex]
- [tex]\( c = 3 \)[/tex]
- [tex]\( k = 2 \)[/tex]

We need to make [tex]\( m \)[/tex] the subject of the formula given:

[tex]\[ t = \frac{k m^2 L}{t^2} \][/tex]

Given that [tex]\( L = c \)[/tex], we can substitute [tex]\( L \)[/tex] with [tex]\( c \)[/tex]:
[tex]\[ t = \frac{k m^2 c}{t^2} \][/tex]

First, let's isolate [tex]\( m^2 \)[/tex] on one side of the equation. Multiply both sides by [tex]\( t^2 \)[/tex] to get rid of the fraction:
[tex]\[ t^3 = k m^2 c \][/tex]

Next, solve for [tex]\( m^2 \)[/tex] by dividing both sides by [tex]\( k c \)[/tex]:
[tex]\[ m^2 = \frac{t^3}{k c} \][/tex]

Finally, solve for [tex]\( m \)[/tex] by taking the square root of both sides:
[tex]\[ m = \sqrt{\frac{t^3}{k c}} \][/tex]

Now, substitute the given values into the equation:
[tex]\[ m = \sqrt{\frac{6^3}{2 \cdot 3}} \][/tex]
[tex]\[ m = \sqrt{\frac{216}{6}} \][/tex]
[tex]\[ m = \sqrt{36} \][/tex]
[tex]\[ m = 6 \][/tex]

Therefore, the value of [tex]\( m \)[/tex] is [tex]\( 6 \)[/tex].

Thus, the result is:
- [tex]\( h = 1 \)[/tex]
- [tex]\( t = 6 \)[/tex]
- [tex]\( c = 3 \)[/tex]
- [tex]\( k = 2 \)[/tex]
- [tex]\( m = 6 \)[/tex]