Answer :
Certainly! Let's go through the steps one by one to solve the equation [tex]\(-2(5x + 8) = 14 + 6x\)[/tex].
### Step 1:
Distribute the [tex]\(-2\)[/tex] to both [tex]\(5x\)[/tex] and [tex]\(8\)[/tex]. This means we multiply [tex]\(-2\)[/tex] by [tex]\(5x\)[/tex] and [tex]\(-2\)[/tex] by [tex]\(8\)[/tex]:
[tex]\[ -2(5x) + -2(8) = -10x - 16 \][/tex]
This gives us:
[tex]\[ -10x - 16 = 14 + 6x \][/tex]
So, for Step 1: Distribute [tex]\(-2\)[/tex] to [tex]\(5x\)[/tex] and [tex]\(8\)[/tex].
### Step 2:
Add [tex]\(10x\)[/tex] to both sides to combine like terms. This will move the [tex]\(10x\)[/tex] term to the right side:
[tex]\[ -10x - 16 + 10x = 14 + 6x + 10x \][/tex]
This simplifies to:
[tex]\[ -16 = 14 + 16x \][/tex]
So, for Step 2: Add [tex]\(10x\)[/tex] \to [tex]\(6x\)[/tex].
### Step 3:
Subtract 14 from both sides to isolate the terms with [tex]\(x\)[/tex]:
[tex]\[ -16 - 14 = 14 - 14 + 16x \][/tex]
This simplifies to:
[tex]\[ -30 = 16x \][/tex]
So, for Step 3: Subtract [tex]\(14\)[/tex].
### Step 4:
Divide both sides by [tex]\(-16\)[/tex] to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{-30}{16} = \frac{16x}{16} \][/tex]
This simplifies to:
[tex]\[ x = \frac{-30}{16} = -\frac{15}{8} \][/tex]
So, for Step 4: Divide by [tex]\(-16\)[/tex].
Putting it all together, the completed statements for steps 1-4 are:
Step 1: Distribute [tex]\(-2\)[/tex] to [tex]\(5x\)[/tex] and [tex]\(8\)[/tex].
Step 2: Add [tex]\(10x\)[/tex] to [tex]\(6x\)[/tex].
Step 3: Subtract [tex]\(14\)[/tex].
Step 4: Divide by [tex]\(-16\)[/tex].
### Step 1:
Distribute the [tex]\(-2\)[/tex] to both [tex]\(5x\)[/tex] and [tex]\(8\)[/tex]. This means we multiply [tex]\(-2\)[/tex] by [tex]\(5x\)[/tex] and [tex]\(-2\)[/tex] by [tex]\(8\)[/tex]:
[tex]\[ -2(5x) + -2(8) = -10x - 16 \][/tex]
This gives us:
[tex]\[ -10x - 16 = 14 + 6x \][/tex]
So, for Step 1: Distribute [tex]\(-2\)[/tex] to [tex]\(5x\)[/tex] and [tex]\(8\)[/tex].
### Step 2:
Add [tex]\(10x\)[/tex] to both sides to combine like terms. This will move the [tex]\(10x\)[/tex] term to the right side:
[tex]\[ -10x - 16 + 10x = 14 + 6x + 10x \][/tex]
This simplifies to:
[tex]\[ -16 = 14 + 16x \][/tex]
So, for Step 2: Add [tex]\(10x\)[/tex] \to [tex]\(6x\)[/tex].
### Step 3:
Subtract 14 from both sides to isolate the terms with [tex]\(x\)[/tex]:
[tex]\[ -16 - 14 = 14 - 14 + 16x \][/tex]
This simplifies to:
[tex]\[ -30 = 16x \][/tex]
So, for Step 3: Subtract [tex]\(14\)[/tex].
### Step 4:
Divide both sides by [tex]\(-16\)[/tex] to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{-30}{16} = \frac{16x}{16} \][/tex]
This simplifies to:
[tex]\[ x = \frac{-30}{16} = -\frac{15}{8} \][/tex]
So, for Step 4: Divide by [tex]\(-16\)[/tex].
Putting it all together, the completed statements for steps 1-4 are:
Step 1: Distribute [tex]\(-2\)[/tex] to [tex]\(5x\)[/tex] and [tex]\(8\)[/tex].
Step 2: Add [tex]\(10x\)[/tex] to [tex]\(6x\)[/tex].
Step 3: Subtract [tex]\(14\)[/tex].
Step 4: Divide by [tex]\(-16\)[/tex].