## Answer :

### Step 1:

Distribute the [tex]\(-2\)[/tex] to both [tex]\(5x\)[/tex] and [tex]\(8\)[/tex]. This means we multiply [tex]\(-2\)[/tex] by [tex]\(5x\)[/tex] and [tex]\(-2\)[/tex] by [tex]\(8\)[/tex]:

[tex]\[ -2(5x) + -2(8) = -10x - 16 \][/tex]

This gives us:

[tex]\[ -10x - 16 = 14 + 6x \][/tex]

So, for Step 1:

**Distribute**[tex]\(-2\)[/tex] to [tex]\(5x\)[/tex] and [tex]\(8\)[/tex].

### Step 2:

Add [tex]\(10x\)[/tex] to both sides to combine like terms. This will move the [tex]\(10x\)[/tex] term to the right side:

[tex]\[ -10x - 16 + 10x = 14 + 6x + 10x \][/tex]

This simplifies to:

[tex]\[ -16 = 14 + 16x \][/tex]

So, for Step 2:

**Add**[tex]\(10x\)[/tex] \

**to**[tex]\(6x\)[/tex].

### Step 3:

Subtract 14 from both sides to isolate the terms with [tex]\(x\)[/tex]:

[tex]\[ -16 - 14 = 14 - 14 + 16x \][/tex]

This simplifies to:

[tex]\[ -30 = 16x \][/tex]

So, for Step 3:

**Subtract**[tex]\(14\)[/tex].

### Step 4:

Divide both sides by [tex]\(-16\)[/tex] to solve for [tex]\(x\)[/tex]:

[tex]\[ \frac{-30}{16} = \frac{16x}{16} \][/tex]

This simplifies to:

[tex]\[ x = \frac{-30}{16} = -\frac{15}{8} \][/tex]

So, for Step 4:

**Divide by**[tex]\(-16\)[/tex].

Putting it all together, the completed statements for steps 1-4 are:

Step 1:

**Distribute**[tex]\(-2\)[/tex] to [tex]\(5x\)[/tex] and [tex]\(8\)[/tex].

Step 2:

**Add**[tex]\(10x\)[/tex]

**to**[tex]\(6x\)[/tex].

Step 3:

**Subtract**[tex]\(14\)[/tex].

Step 4:

**Divide by**[tex]\(-16\)[/tex].