d)
[tex]\[
\begin{array}{c}
9+1=\ldots \ldots \ldots \ldots \\
98+12=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
987+123=\ldots \ldots \ldots \ldots \ldots
\end{array}
\][/tex]

2. Fill in the missing number in each number pattern.

a) [tex]\(1 ; 2 ; 4 ; 7 ; 11 ; 16 ; 22 ; 23 ; 25 ; 28 ; 32; \quad \ldots \quad 43\)[/tex]

b) [tex]\(12 ; 18 ; 26 ; 36 ; 48 ; 62; \quad \ldots \quad 96 ; 116\)[/tex]

c) [tex]\(0.12 ; 0.11 ; 0.1; \quad \ldots \quad 0.08\)[/tex]

d) [tex]\(19 ; 25 ; 31 ; 37; \quad \ldots \quad 49\)[/tex]

e) [tex]\(100 ; 900 ; 7200 ; 50400; \quad \ldots \quad 1512000\)[/tex]

f) [tex]\(0.62 ; 0.77 ; 0.92; \quad \ldots \quad 1.22\)[/tex]

g) [tex]\(22 ; 27 ; 32 ; 37; \quad \ldots \quad 47\)[/tex]

h) [tex]\(\frac{1}{12} ; \frac{1}{11} ; \frac{1}{10} ; \frac{1}{9}; \quad \ldots \)[/tex]

i) [tex]\(122 ; 221 ; 320 ; 419; \quad \ldots \quad 617\)[/tex]



Answer :

Sure! Let's walk through each part of the question step-by-step, providing the solutions for each.

### Part d)

1. 9 + 1 = 10
2. 98 + 12 = 110
3. 987 + 123 = 1110

### Part 2: Fill in the missing number in each number pattern.

#### a) 1 ; 2 ; 4 ; 7 ; 11 ; 16 ; 22 ; 23 ; 25 ; 28 ; 32 ; [tex]$\qquad$[/tex] ; 43

The missing number pattern here is:
- The differences between consecutive numbers are 1, 2, 3, 4, 5, 6, 1, 2, 3 and 4.

So, the missing number after 32 is:
32 + 11 = 43

#### b) 12 ; 18 ; 26 ; 36 ; 48 ; 62 ; [tex]$\qquad$[/tex] ; [tex]$\qquad$[/tex] 96 ; 116
The difference pattern is: 6, 8, 10, 12, 14, 34, 20.

So, the missing number after 62 is:
62 + 34 = 96

And the next number after 96 is:
96 + 20 = 116

#### c) 0,12 ; 0,11 ; 0,1 ; [tex]$\qquad$[/tex] ; 0,08
The difference pattern is: -0.01, -0.1, -0.02, -0.03.

So, the missing number after 0.1 is:
0.1 + (-0.02) = 0.08

#### d) 19 ; 25 ; 31 ; 37 ; [tex]$\qquad$[/tex] ; 49
The difference pattern is consistently 6.

So, the missing number after 37 is:
37 + 6 = 43

And the next number after 43 is:
43 + 6 = 49

#### e) 100 ; 900 ; 7200 ; 50400 ; [tex]$\qquad$[/tex] ; 1512000
The pattern is multiplying each number by succession downwards from 9, 8, 7, 6. Therefore, the next multiplier is:

50400 × 30 = 1512000

#### f) 0,62 ; 0,77 ; 0,92 ; [tex]$\qquad$[/tex] ; 1,07
The difference pattern here is consistently 0.15.

So, the missing number after 0.92 is:
0.92 + 0.15 = 1.07

#### g) 22 ; 27 ; 32 ; 37 ; [tex]$\qquad$[/tex] ; 47
The difference pattern is consistently 5.

So, the missing number after 37 is:
37 + 5 = 42

And the next number after 42 is:
42 + 5 = 47

#### h) [tex]$\frac{1}{12} ; \frac{1}{11} ; \frac{1}{10} ; \frac{1}{9}$[/tex] ; [tex]$\qquad$[/tex]
The pattern here is the denominators increasing by 1.

So, the missing number is:
[tex]$\frac{1}{8}$[/tex]

#### i) 122 ; 221 ; 320 ; 419 ; [tex]$\qquad$[/tex] ; [tex]$\qquad$[/tex] ; [tex]$\qquad$[/tex] ; 617
The differences between each number are consistently increasing by 99.

So, the missing numbers are:

- 122 + 99 = 221
- 221 + 99 = 320
- 320 + 99 = 419
- 419 + 99 = 518
- 518 + 99 = 617